Prof. Dr. Bernd Ammann

## Differential Geometry II

## Exercise Sheet no. 12

## Exercise 1

Let $(M, g)$ be a Riemannian manifold, whose sectional curvature $K$ satisfies the inequalities:

$$
0<L \leq K \leq H,
$$

for some positive constants $L$ and $H$. For a geodesic $\gamma:[0, \ell] \rightarrow M$, parametrized by arclength, we define

$$
d:=\min \left\{t>0 \mid \gamma(t) \text { is conjugated to } \gamma(0) \text { along }\left.\gamma\right|_{[0, t]}\right\} .
$$

Show

$$
\frac{\pi}{\sqrt{H}} \leq d \leq \frac{\pi}{\sqrt{L}}
$$

Hint: Use the First Rauch Comparison Theorem.

## Exercise 2

Let $(M, g)$ be a complete Riemannian manifold with sectional curvature $K \geq 0$. Let $\Gamma$ be a discrete group without 2 -torsion (i.e. $\gamma^{2} \neq e$, for any $\gamma \in \Gamma \backslash\{e\}$, where $e$ is the identity element of $\Gamma$ ), acting isometrically, freely and properly on $M$. For a point $p \in M$, let $\gamma_{0} \in \Gamma$ be an element with $d\left(p, \gamma_{0} p\right)=\min _{\gamma \in \Gamma \backslash\{e\}} d(p, \gamma p)$.
We choose a minimal geodesics $c_{1}$ which connects $p$ to $\gamma_{0} p$, and a geodesic $c_{2}$ which connects $p$ to $\gamma_{0}^{-1} p$. Show that $c_{1}$ and $c_{2}$ form at $p$ an angle $\alpha \geq \frac{\pi}{3}$.

## Exercise 3

Let $(M, g)$ be a complete Riemannian manifold with sectional curvature $K \geq 0$ and let $\gamma, \sigma:[0, \infty) \rightarrow M$ be two geodesics, parametrized by arclength, with $\gamma(0)=\sigma(0)$. We assume that $\gamma$ is a ray and that $\alpha:=$ $\varangle(\dot{\gamma}(0), \dot{\sigma}(0))<\frac{\pi}{2}$.
Show that $\lim _{t \rightarrow \infty} d(\sigma(0), \sigma(t))=\infty$.
Hint: Using the triangle inequality, show first that it is enough to prove: $\lim _{s \rightarrow \infty}(d(\gamma(s), \sigma(t))-d(\gamma(s), \gamma(0))) \geq t \cos \alpha$, for any fixed $t \geq 0$. Then apply Toponogov's Theorem (A).

Hand in the solutions on Monday, July 15, 2013 before the lecture.

