Universität Regensburg, Mathematik Prof. Dr. Bernd Ammann Dr. Mihaela Pilca

Differential Geometry II Exercise Sheet no. 12

Exercise 1

Let (M, g) be a Riemannian manifold, whose sectional curvature K satisfies the inequalities:

$$0 < L \le K \le H,$$

for some positive constants L and H. For a geodesic $\gamma : [0, \ell] \to M$, parametrized by arclength, we define

$$d := \min\{t > 0 \,|\, \gamma(t) \text{ is conjugated to } \gamma(0) \text{ along } \gamma|_{[0,t]}\}.$$

Show

$$\frac{\pi}{\sqrt{H}} \leq d \leq \frac{\pi}{\sqrt{L}}.$$

Hint: Use the First Rauch Comparison Theorem.

Exercise 2

Let (M, g) be a complete Riemannian manifold with sectional curvature $K \ge 0$. Let Γ be a discrete group without 2-torsion (*i.e.* $\gamma^2 \ne e$, for any $\gamma \in \Gamma \setminus \{e\}$, where e is the identity element of Γ), acting isometrically, freely and properly on M. For a point $p \in M$, let $\gamma_0 \in \Gamma$ be an element with $d(p, \gamma_0 p) = \min_{\gamma \in \Gamma \setminus \{e\}} d(p, \gamma p)$.

We choose a minimal geodesics c_1 which connects p to $\gamma_0 p$, and a geodesic c_2 which connects p to $\gamma_0^{-1} p$. Show that c_1 and c_2 form at p an angle $\alpha \geq \frac{\pi}{3}$.

Exercise 3

Let (M,g) be a complete Riemannian manifold with sectional curvature $K \ge 0$ and let $\gamma, \sigma : [0, \infty) \to M$ be two geodesics, parametrized by arclength, with $\gamma(0) = \sigma(0)$. We assume that γ is a ray and that $\alpha := \sphericalangle(\dot{\gamma}(0), \dot{\sigma}(0)) < \frac{\pi}{2}$.

Show that $\lim_{t\to\infty} d(\sigma(0), \sigma(t)) = \infty$.

Hint: Using the triangle inequality, show first that it is enough to prove: $\lim_{s\to\infty} (d(\gamma(s), \sigma(t)) - d(\gamma(s), \gamma(0))) \ge t \cos \alpha, \text{ for any fixed } t \ge 0. \text{ Then apply}$ Toponogov's Theorem (A).

Hand in the solutions on Monday, July 15, 2013 before the lecture.

SoSe 2013 01.07.2013