Universität Regensburg, Mathematik Prof. Dr. Bernd Ammann Dr. Mihaela Pilca SoSe 2013 17.06.2013

Differential Geometry II Exercise Sheet no. 10

Exercise 1

Determine $\mathcal{C}_p^{\mathrm{tan}}M$, and \mathcal{C}_pM for

- (a) $M = \mathbb{R}^2 / \Gamma$, where Γ is the subgroup of \mathbb{R}^2 generated by $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$, and p := [0].
- (b) $M = \mathbb{R}P^m = S^m / \{\pm 1\}$ with the quotient metric, and $p := [e_1]$.

Exercise 2

Let $M = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = e^{-z^2}\}$. Show that M is a smooth surface, and that M is complete, $vol(M) < \infty$, injrad(M) = 0, $diam(M) = \infty$.

Exercise 3

Let M be a complete connected Riemannian manifold, $p \in M$ fixed. We define diam $M := \sup\{d(x, y) \mid x, y \in M\}$. Show

- (a) diam $M = \sup_{X \in SM} s(X)$
- (b) $\operatorname{injrad}(p) = \min_{X \in S_p M} s(X)$
- (c) $\operatorname{injrad}(M) = \inf_{X \in SM} s(X)$
- (d) $\sup_{X \in SM} s(X) = \infty$ if and only if there is for all $p \in M$ an $X \in S_pM$ with $s(X) = \infty$. Hint: Use Exercise no. 3 on Sheet no. 9 of Differential Geometry I
- (e) Give an example of a complete Riemannian manifold such that $\sup_{X \in S_pM} s(X)$ depends on p.

Exercise 4

We consider $S^3 \subset \mathbb{C}^2$ endowed with the standard metric, and $\Gamma := \{1, i, -1, -i\}$ which acts freely und isometrically on S^3 . Let $M := S^3/\Gamma$, $\pi : S^3 \to M$ the corresponding projection and $p := \pi(e_1) = e_1 \mod \Gamma \in M$. Show that for the cut locus \mathcal{C}_p the following holds:

$$\mathcal{C}_p = \{ \pi(x) \mid x \in S^3 \text{ with } d(x, e_1) = d(x, ie_1) \}$$
$$= \left\{ \pi \left(\frac{(1+i)r}{\sqrt{2}} e_1 + v e_2 \right) \mid r \in [0, 1], \quad v \in \mathbb{C} \text{ with } r^2 + |v|^2 = 1 \right\}.$$

Answer without justification: Where are the minima and maxima of the function $s: S_p M \to (0, \infty)$?

Bonus question: Where is C_p a smooth hypersurface and where not?

Hand in the solutions on Monday, June 24, 2013 before the lecture.