Prof. Dr. Bernd Ammann

Differential Geometry II

Exercise Sheet no. 10

Exercise 1

Determine $\mathcal{C}_{p}^{\text {tan }} M$, and $\mathcal{C}_{p} M$ for
(a) $M=\mathbb{R}^{2} / \Gamma$, where Γ is the subgroup of \mathbb{R}^{2} generated by $\binom{1}{0}$ and $\binom{0}{2}$, and $p:=[0]$.
(b) $M=\mathbb{R} P^{m}=S^{m} /\{ \pm 1\}$ with the quotient metric, and $p:=\left[e_{1}\right]$.

Exercise 2

Let $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=e^{-z^{2}}\right\}$. Show that M is a smooth surface, and that M is complete, $\operatorname{vol}(M)<\infty, \operatorname{injrad}(M)=0, \operatorname{diam}(M)=\infty$.

Exercise 3

Let M be a complete connected Riemannian manifold, $p \in M$ fixed. We define $\operatorname{diam} M:=\sup \{d(x, y) \mid x, y \in M\}$. Show
(a) $\operatorname{diam} M=\sup _{X \in S M} s(X)$
(b) $\operatorname{injrad}(p)=\min _{X \in S_{p} M} s(X)$
(c) $\operatorname{injrad}(M)=\inf _{X \in S M} s(X)$
(d) $\sup _{X \in S M} s(X)=\infty$ if and only if there is for all $p \in M$ an $X \in S_{p} M$ with $s(X)=\infty$.
Hint: Use Exercise no. 3 on Sheet no. 9 of Differential Geometry I
(e) Give an example of a complete Riemannian manifold such that $\sup _{X \in S_{p} M} s(X)$ depends on p.

Exercise 4

We consider $S^{3} \subset \mathbb{C}^{2}$ endowed with the standard metric, and $\Gamma:=\{1, i,-1,-i\}$ which acts freely und isometrically on S^{3}. Let $M:=S^{3} / \Gamma, \pi: S^{3} \rightarrow M$ the corresponding projection and $p:=\pi\left(e_{1}\right)=e_{1} \bmod \Gamma \in M$. Show that for the cut locus \mathcal{C}_{p} the following holds:

$$
\begin{gathered}
\mathcal{C}_{p}=\left\{\pi(x) \mid x \in S^{3} \text { with } d\left(x, e_{1}\right)=d\left(x, i e_{1}\right)\right\} \\
=\left\{\left.\pi\left(\frac{(1+i) r}{\sqrt{2}} e_{1}+v e_{2}\right) \right\rvert\, r \in[0,1], \quad v \in \mathbb{C} \text { with } r^{2}+|v|^{2}=1\right\} .
\end{gathered}
$$

Answer without justification: Where are the minima and maxima of the function $s: S_{p} M \rightarrow(0, \infty)$?
Bonus question: Where is \mathcal{C}_{p} a smooth hypersurface and where not?

Hand in the solutions on Monday, June 24, 2013 before the lecture.

