Differential Geometry II
 Exercise Sheet no. 8

Exercise 1

Let G be a Lie group which acts isometrically, freely and properly on a Riemannian manifold (M, g). (An action is isometric if l_{σ} is an isometry for any $\sigma \in G$.) Show that there exists a metric on the quotient manifold $G \backslash M$ such that the projection $\pi: M \rightarrow G \backslash M$ is a Riemannian submersion. (A submersion $\pi: M \rightarrow N$ between Riemannian manifolds is called a Riemannian submersion if $d_{x} \pi$ is an isometry from the orthogonal complement of $\operatorname{ker} d_{x} \pi$ in $T_{x} M$ to $T_{\pi(x)} N$ for any $x \in M$.)

Exercise 2

Let $\pi:(M, g) \rightarrow(N, h)$ be a Riemannian submersion.
i) Let γ be a geodesic in (N, h). Show that any horizontal lift of γ is a geodesic in (M, g).
ii) Let $\tau:[a, b] \rightarrow M$ be a geodesic in (M, g) such that $\dot{\tau}(a)$ is horizontal. Show that $\dot{\tau}(t)$ is horizontal for all $t \in[a, b]$. Conclude that if a horizontal lift $\widetilde{\gamma}$ of a curve γ is a geodesic in (M, g), then γ is a geodesic in (N, h).
iii) Let $\pi: S^{2 n+1} \rightarrow \mathbb{C} P^{n}$ be the projection $z \mapsto[z]$, which defines the so-called Hopf fibration. Consider on $\mathbb{C} P^{n}$ the Riemannian metric that makes π a Riemannian submersion, where $S^{2 n+1}$ carries the standard metric. This means $\mathbb{C} P^{n}$ carries the metric defined vai Exercise 1. This metric on $\mathbb{C} P^{n}$ is called the Fubini-Study metric of $\mathbb{C} P^{n}$.
Show that the geodesics parametrized by arclength in $\mathbb{C} P^{n}$ are of the form $\gamma(t)=[\cos t v+\sin t w]$, where $v, w \in S^{2 n+1} \subset \mathbb{C}^{n+1}$ with $\sum_{j=1}^{n+1} v_{j} \bar{w}_{j}=$ 0 . Show furthermore that in $\mathbb{C} P^{1}$ the points $[(1,0)]$ and $[(0,1)]$ are conjugated along a geodesic.

Exercise 3

i) Let V and W be two m-dimensional real vector spaces and A_{t} a smooth family of homomorphisms, where t is a real parameter. Let $A_{t}^{\prime}=\frac{d}{d t} A_{t}$. Assume that

$$
\operatorname{Im}\left(A_{0}\right) \oplus A_{0}^{\prime}\left(\operatorname{Ker}\left(A_{0}\right)\right)=W
$$

Show that there exists an $\varepsilon>0$, such that A_{t} has rank m for all $t \in(-\varepsilon, 0) \cup(0, \varepsilon)$.
ii) Let J_{1} and J_{2} be two Jacobi vector fields along a geodesic on a Riemannian manifold. Show that the function

$$
t \mapsto\left\langle J_{1}(t), J_{2}^{\prime}(t)\right\rangle-\left\langle J_{1}^{\prime}(t), J_{2}(t)\right\rangle
$$

is constant.
iii) Let $\gamma:[0, b) \rightarrow M$ be a geodesic on a Riemannian manifold. Show that the set

$$
\{t \in[0, b) \mid t \text { is conjugated to } 0\}
$$

is closed and discrete in $[0, b)$. Hint: Use i) and ii).

Exercise 4

Let $\pi:(M, g) \rightarrow(N, h)$ be a Riemannian submersion. The vectors in the kernel of $d \pi$ are called vertical. For each $X \in \Gamma(T N)$, let \bar{X} denote the horizontal lift of X, i.e. $\bar{X} \in \Gamma(T M)$ such that $d \pi \circ \bar{X}=X \circ \pi$ and \bar{X} is orthogonal in each point to the kernel of $d \pi$.
i) Show that the vertical part of $[\bar{X}, \bar{Y}]$ in $p \in M$, denoted by $[\bar{X}, \bar{Y}]_{p}^{v}$, depends only on $\bar{X}(p)$ and $\bar{Y}(p)$.
ii) Let $X \in \Gamma(T N), \eta \in \Gamma(T M)$ and η is vertical. Show that $[\eta, \bar{X}]$ is vertical.
iii) Compute $\overline{[X, Y]}-[\bar{X}, \bar{Y}]$ and $\nabla_{\bar{X}}^{M} \bar{Y}-\overline{\nabla_{X}^{N} Y}$, for $X, Y \in \Gamma(T N)$.
iv) Assume that $\bar{X}(p)$ and $\bar{Y}(p)$ are orthonormal. Let E be the plane spanned by $X(\pi(p))$ and $Y(\pi(p))$ and \bar{E} be the plane spanned by $\bar{X}(p)$ and $\bar{Y}(p)$. Show the following formula for the sectional curvatures of (M, g) and (N, h):

$$
K^{N, h}(E)=K^{M, g}(\bar{E})+\frac{3}{4}\left\|[\bar{X}, \bar{Y}]_{p}^{v}\right\|^{2} .
$$

Hand in the solutions on Monday, June 10, 2013 before the lecture.

