Differential Geometry II

Exercise Sheet no. 7

Exercise 1

The Killing form of a Lie algebra \mathfrak{g} is the function defined by:

$$
B: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}, \quad B(X, Y):=\operatorname{tr}(\operatorname{ad}(X) \circ \operatorname{ad}(Y))
$$

Show the following properties of the Killing form:
i) B is a symmetric bilinear form on \mathfrak{g}.
ii) If \mathfrak{g} is the Lie algebra of the Lie group G, then B is Ad-invariant:

$$
B(\operatorname{Ad}(\sigma) X, \operatorname{Ad}(\sigma) Y)=B(X, Y), \quad \forall \sigma \in G, \forall X, Y \in \mathfrak{g}
$$

Hint: Show first that if α is an automorphism of \mathfrak{g}, i.e. a linear isomorphism α satisfying $\alpha([X, Y])=[\alpha(X), \alpha(Y)]$ for all $X, Y \in \mathfrak{g}$, then $\operatorname{ad}(\alpha(X))=\alpha \circ \operatorname{ad}(X) \circ \alpha^{-1}$, for any $X \in \mathfrak{g}$.
iii) For each $Z \in \mathfrak{g}, \operatorname{ad}(Z)$ is skew-symmetric with respect to B :

$$
B(\operatorname{ad}(Z) X, Y)=-B(X, \operatorname{ad}(Z) X), \forall X, Y \in \mathfrak{g} .
$$

Exercise 2

Let (M, g) be a Riemannian manifold of constant sectional curvature κ and let $\gamma:[0, \ell] \rightarrow M$ be a geodesic parametrized by arc-length. Let J be a vector field along γ, normal to γ^{\prime}.
i) Show that the Jacobi equation can be written as $J^{\prime \prime}+\kappa J=0$.
ii) Let V be a parallel unit vector field along γ normal to γ^{\prime}. Determine the Jacobi vector field J satisfying the initial conditions $J(0)=0$ and $J^{\prime}(0)=V(0)$.

Exercise 3

i) Let (M, g) be a Riemannian manifold and $\gamma: I \rightarrow M$ a geodesic. Show that if M is 2-dimensional, then the relation for points of γ to be conjugated to each other along γ is transitive. More precisely, for any $t_{i} \in I, i=1,2,3$, such that $\gamma\left(t_{1}\right)$ is conjugated to $\gamma\left(t_{2}\right)$ and $\gamma\left(t_{2}\right)$ is conjugated to $\gamma\left(t_{3}\right)$, it follows that $\gamma\left(t_{1}\right)$ is conjugated to $\gamma\left(t_{3}\right)$.
ii) Show that the statement in i) is not true for higher dimensions, by considering for instance the Riemannian manifold $\left(S^{2} \times S^{2}, g_{s t d} \oplus g_{s t d}\right)$, that is the Riemannian product of two spheres with the standard metric and the following geodesic $\gamma(t)=(\cos (t), 0, \sin (t), \cos (\pi t), 0, \sin (\pi t)) \in$ $S^{2} \times S^{2} \subset \mathbb{R}^{3} \times \mathbb{R}^{3}=\mathbb{R}^{6}$.

Hand in the solutions on Monday, June 3, 2013 before the lecture.

