SoSe 2013 13.05.2013

Differential Geometry II Exercise Sheet no. 5

Exercise 1

Let $S^3 \subset \mathbb{H}$ be the unit sphere in the quaternion algebra. Consider the following map:

$$\theta: S^3 \times S^3 \to \operatorname{Aut}(\mathbb{H})$$
$$(z, w) \mapsto (q \mapsto zq\overline{w}).$$

- i) Show that θ defines a smooth action of $S^3 \times S^3$ on \mathbb{H} , which preserves the standard norm on $\mathbb{H} \cong \mathbb{R}^4$.
- ii) Compute the kernel of θ .
- iii) Show that the differential of θ at the identity element is bijective.
- iv) Conclude that θ is the universal covering of SO(4).

Exercise 2

Let \mathbb{Z} act on \mathbb{R}^n by $k \cdot x := 2^k x$, for $k \in \mathbb{Z}, x \in \mathbb{R}^n$.

- i) Is this action proper on $M_1 := \mathbb{R}^n$, on $M_2 := \mathbb{R}^n \setminus \{0\}$, on $M_3 := (0, \infty) \times (0, \infty) \times \mathbb{R}^{n-2}$?
- ii) Are the quotients $\mathbb{Z} \setminus M_i$ Hausdorff? Are they compact?

Exercise 3

For 0 < m < n, let G(m, n) be the set of all *m*-dimensional subspaces in \mathbb{R}^n . Show that $\operatorname{GL}(n, \mathbb{R})$ and $\operatorname{O}(n, \mathbb{R})$ act transitively on G(m, n). Determine the isotropy groups of $\mathbb{R}^m \times \{0\}$ for both actions, and write G(m, n) as homogeneous space G/H where $G = \operatorname{GL}(n, \mathbb{R})$ or $G = \operatorname{O}(n, \mathbb{R})$. What is the interpretation of

- i) $O(n, \mathbb{R})/(O(m, \mathbb{R}) \times O(n m, \mathbb{R})),$
- ii) $\operatorname{SO}(n, \mathbb{R})/(\operatorname{SO}(m, \mathbb{R}) \times \operatorname{SO}(n m, \mathbb{R})),$
- iii) $\operatorname{GL}_{+}(n, \mathbb{R})/(\operatorname{GL}_{+}(m, \mathbb{R}) \times \operatorname{GL}_{+}(n-m, \mathbb{R})),$
- iv) $\operatorname{GL}(n,\mathbb{R})/(\operatorname{GL}(m,\mathbb{R})\times\operatorname{GL}(n-m,\mathbb{R})).$

Hint: Be cautious with the isotropy group of $GL(n, \mathbb{R})$, and its relation to iii) and iv).

Hand in the solutions on Monday, May 20, 2013 before the lecture.