Universität Regensburg, Mathematik Prof. Dr. Bernd Ammann Dr. Mihaela Pilca SoSe 2013 29.04.2013

Differential Geometry II Exercise Sheet no. 3

Exercise 1

Let
$$\mathcal{H}_3 := \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} | x, y, z \in \mathbb{R} \right\}$$
 and $\Gamma := \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} | x, y, z \in \mathbb{Z} \right\}.$

- i) Show that \mathcal{H}_3 and Γ are Lie groups. Does \mathcal{H}_3 admit a bi-invariant Riemannian metric?
- ii) Show that Γ acts on \mathcal{H}_3 by left multiplication and this action is free and proper.
- iii) Consider the following action of \mathbb{R} on \mathcal{H}_3 :

$$\mathbb{R} \times \mathcal{H}_3 \to \mathcal{H}_3, \quad \left(\tilde{z}, \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}\right) \mapsto \begin{pmatrix} 1 & x & z + \tilde{z} \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}.$$

Show that this action descends to an action of $\mathbb{Z}\setminus\mathbb{R}$ on the quotient $\Gamma\setminus\mathcal{H}_3$ and the quotient manifold obtained by this action is the 2-dimensional torus.

Exercise 2

Let $S^{4n+3} \subset \mathbb{H}^{n+1}$ be the unit sphere in the (n+1)-dimensional quaternionic vector space.

- i) Show that $S^3 \subset \mathbb{H}$ acts smoothly, freely and properly on S^{4n+3} .
- ii) Give an atlas for the quotient manifold $\mathbb{H}P^n := S^3 \setminus S^{4n+3}$. The manifold $\mathbb{H}P^n$ is called the *n*-dimensional quaternionic projective space.

Exercise 3

- i) Determine the Lie bracket $[\cdot, \cdot]$ on $\mathfrak{gl}(n, \mathbb{R})$, the Lie algebra of the general linear group $GL(n, \mathbb{R})$.
- ii) For any Lie group G with adjoint representation Ad : G → Aut(g), let ad : g → End(g) denote the differential of Ad at the unit element of G, ad := d₁Ad.
 Show that for GL(n, ℝ), the map ad is given by ad(X)(Y) = [X, Y], for all X, Y ∈ gl(n, ℝ).
- iii) Let $X \in \mathfrak{gl}(n, \mathbb{R})$, \widetilde{X} the corresponding left-invariant vector field on $GL(n, \mathbb{R})$ and $\gamma : \mathbb{R} \to GL(n, \mathbb{R})$ be a curve with $\gamma(0) = \mathbb{1}_n$, $\dot{\gamma}(t) = \widetilde{X}_{\gamma(t)}$. Show that $\gamma(t) = \sum_{n=0}^{\infty} \frac{1}{n!} (tX)^n$.

Hand in the solutions on Monday, May 6, 2013 before the lecture.