Differential Geometry II
 Exercise Sheet no. 3

Exercise 1

Let $\mathcal{H}_{3}:=\left\{\left.\left(\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right) \right\rvert\, x, y, z \in \mathbb{R}\right\}$ and $\Gamma:=\left\{\left.\left(\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right) \right\rvert\, x, y, z \in \mathbb{Z}\right\}$.
i) Show that \mathcal{H}_{3} and Γ are Lie groups. Does \mathcal{H}_{3} admit a bi-invariant Riemannian metric?
ii) Show that Γ acts on \mathcal{H}_{3} by left multiplication and this action is free and proper.
iii) Consider the following action of \mathbb{R} on \mathcal{H}_{3} :

$$
\mathbb{R} \times \mathcal{H}_{3} \rightarrow \mathcal{H}_{3}, \quad\left(\tilde{z},\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)\right) \mapsto\left(\begin{array}{ccc}
1 & x & z+\tilde{z} \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) .
$$

Show that this action descends to an action of $\mathbb{Z} \backslash \mathbb{R}$ on the quotient $\Gamma \backslash \mathcal{H}_{3}$ and the quotient manifold obtained by this action is the 2-dimensional torus.

Exercise 2

Let $S^{4 n+3} \subset \mathbb{H}^{n+1}$ be the unit sphere in the ($n+1$)-dimensional quaternionic vector space.
i) Show that $S^{3} \subset H$ acts smoothly, freely and properly on $S^{4 n+3}$.
ii) Give an atlas for the quotient manifold $H^{n}:=S^{3} \backslash S^{4 n+3}$. The manifold H^{n} is called the n-dimensional quaternionic projective space.

Exercise 3

i) Determine the Lie bracket $[\cdot, \cdot]$ on $\mathfrak{g l}(n, \mathbb{R})$, the Lie algebra of the general linear group $G L(n, \mathbb{R})$.
ii) For any Lie group G with adjoint representation $\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g})$, let $\mathrm{ad}: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$ denote the differential of Ad at the unit element of G, $\mathrm{ad}:=\mathrm{d}_{\mathbb{1}} \mathrm{Ad}$.
Show that for $G L(n, \mathbb{R})$, the map ad is given by $\operatorname{ad}(X)(Y)=[X, Y]$, for all $X, Y \in \mathfrak{g l}(n, \mathbb{R})$.
iii) Let $X \in \mathfrak{g l}(n, \mathbb{R}), \widetilde{X}$ the corresponding left-invariant vector field on $G L(n, \mathbb{R})$ and $\gamma: \mathbb{R} \rightarrow G L(n, \mathbb{R})$ be a curve with $\gamma(0)=\mathbb{1}_{n}, \dot{\gamma}(t)=\widetilde{X}_{\gamma(t)}$. Show that $\gamma(t)=\sum_{n=0}^{\infty} \frac{1}{n!}(t X)^{n}$.

Hand in the solutions on Monday, May 6, 2013 before the lecture.

