Differential Geometry II
 Exercise Sheet no. 2

Exercise 1

Let Γ be a discrete group acting smoothly on a differentiable manifold M.
(a) Show that the action is proper if and only if both of the following conditions are satisfied:
(i) Each point $p \in M$ has a neighborhood U such that $(\gamma \cdot U) \cap U=\emptyset$, for all but finitely many $\gamma \in \Gamma$.
(ii) If $p, q \in M$ are not in the same Γ-orbit, there exist neighborhoods U of p and V of q such that $(\gamma \cdot U) \cap V=\emptyset$, for all $\gamma \in \Gamma$.
(b) If Γ acts moreover freely, then show that the action is proper if and only if for each $p, q \in M$ there exist neighborhoods U of p and V of q, such that for all $\gamma \in \Gamma$ with $q \neq \gamma \cdot p$ we have $(\gamma \cdot U) \cap V=\emptyset$.

Exercise 2

Let X be a left-invariant vector field on a Lie group G with unit element e.
i) Show that there exists a curve $\gamma: \mathbb{R} \rightarrow G$ satisfying $\gamma(0)=e$ and $\dot{\gamma}(t)=X_{\gamma(t)}$, for all $t \in \mathbb{R}$.
ii) Show that $\gamma(t+s)=\gamma(t) \cdot \gamma(s)$ and $\gamma(-t)=\gamma(t)^{-1}$, for all $s, t \in \mathbb{R}$.

Exercise 3

Let G and H be two Lie groups and e the unit element of G. If $f: G \rightarrow H$ is a smooth group homomorphism, then show that:
i) $d_{e} f: \mathfrak{g} \rightarrow \mathfrak{h}$ is surjective if and only if f is a submersion.
ii) $d_{e} f: \mathfrak{g} \rightarrow \mathfrak{h}$ is bijective if and only if f is locally diffeomorphic.
iii) If H is connected and $d_{e} f: \mathfrak{g} \rightarrow \mathfrak{h}$ is surjective, then f is surjective. (Hint: Show that $f(G)$ is open and closed. In order to prove that the image is closed one may cosider a sequence converging to any point in the closure of the imagine and translate it by left multiplication to the unit element of H.)

Exercise 4

For $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, consider the following action of \mathbb{R} on $M:=S^{1} \times S^{1}$:
$\mathbb{R} \times M \rightarrow M, \quad(t, p) \mapsto f_{t}(p), \quad$ where $\quad f_{t}(x, y):=\left(e^{i t} x, e^{i \alpha t} y\right)$.
(a) Show that each orbit of this action is dense in M and is neither closed nor a submanifold.
(b) Is the map $\Theta: \mathbb{R} \times M \rightarrow M \times M,(t, p) \mapsto\left(f_{t}(p), p\right)$ closed? Is the action proper?
(c) Is $\mathbb{R} \backslash M$ (equipped with the quotient topology) a Hausdorff space?

Hand in the solutions on Monday, April 29, 2013 before the lecture.

