Differential Geometry II
 Exercise Sheet no. 1

Exercise 1

Assume (M, g) and $\left(M^{\prime}, g^{\prime}\right)$ are surfaces with Riemannian metrics with negative Gauß curvature. Does the product metric on $M \times M^{\prime}$ has everywhere negative sectional curvature?

Exercise 2

Let (M, g) be a Riemannian manifold, $p \in M$. For $r<\operatorname{injrad}(p)$, we define the chart $\varphi:=\left(\exp _{p}| |_{B_{r}(p)}\right)^{-1}$, which defines the normal coordinates centered in p. As usual, we set

$$
g_{i j}(x):=g_{x}\left(\left.\frac{\partial}{\partial \varphi^{i}}\right|_{x},\left.\frac{\partial}{\partial \varphi^{j}}\right|_{x}\right), \quad \text { for } x \in B_{r}(p) \text {. }
$$

i) Show that if $X=\sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}}$, then $\dot{\gamma}_{X}(t)=\left.\sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}}\right|_{\gamma_{X}(t)}$.
ii) Show that the associated Christoffel symbols satisfy $\Gamma_{i j}^{k}(p)=0$. (Hint: use the geodesic equation $\nabla_{\dot{\gamma}_{X}} \dot{\gamma}_{X}=0$ to show that $\sum_{i, j} X^{i} X^{j} \Gamma_{i j}^{k}(p)=$ 0 , for any k and any $\left.\left(X^{1}, \ldots, X^{n}\right) \in \mathbb{R}^{n}\right)$.
iii) Deduce that there exists $c \in \mathbb{R}$ such that $\left|g_{i j}(x)-\delta_{i j}\right| \leq c \cdot(d(x, p))^{2}$, for all $x \in B_{\frac{r}{2}}(p)$. (Hint: use the Koszul formula for $\Gamma_{i j}^{k}$).

Exercise 3

Let (M, g) be a Riemannian manifold, $p, q \in M$. Assume that $\gamma_{i}:[0, L] \rightarrow M$, $i=1,2$, are two different shortest curves from p to q, parametrized by arclength. Extend each geodesic γ_{i} to its maximal domain.
i) Show that $\dot{\gamma}_{1}(L) \neq \dot{\gamma}_{2}(L)$.
ii) Show that $\left.\gamma_{1}\right|_{[0, L+\varepsilon]}$ is not a shortest curve for any $\varepsilon>0$. (Hint: construct a shorter path from p to $\gamma_{1}(L+\varepsilon)$ by using a chart around q and the geodesic γ_{2}).

Exercise 4

Show that the following groups with the manifold structure induced from $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^{2}}$ are Lie groups and determine their Lie algebras:

$$
\mathrm{SO}(n), \mathrm{GL}(m, \mathbb{C}), \mathrm{U}(m), \mathrm{SU}(m), \text { where } n=2 m
$$

Also determine the adjoint representations. Which of these Lie groups have a bi-invariant Riemannian metric?

