Universität Regensburg, Mathematik Prof. Dr. Bernd Ammann Dr. Mihaela Pilca SoSe 2013 15.04.2013

Differential Geometry II Exercise Sheet no. 1

Exercise 1

Assume (M, g) and (M', g') are surfaces with Riemannian metrics with negative Gauß curvature. Does the product metric on $M \times M'$ has everywhere negative sectional curvature?

Exercise 2

Let (M, g) be a Riemannian manifold, $p \in M$. For r < injrad(p), we define the chart $\varphi := (\exp_p|_{B_r(p)})^{-1}$, which defines the normal coordinates centered in p. As usual, we set

$$g_{ij}(x) := g_x(\frac{\partial}{\partial \varphi^i}|_x, \frac{\partial}{\partial \varphi^j}|_x), \quad \text{ for } x \in B_r(p).$$

- i) Show that if $X = \sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}}$, then $\dot{\gamma}_{X}(t) = \sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}}|_{\gamma_{X}(t)}$.
- ii) Show that the associated Christoffel symbols satisfy $\Gamma_{ij}^k(p) = 0$. (Hint: use the geodesic equation $\nabla_{\dot{\gamma}_X} \dot{\gamma}_X = 0$ to show that $\sum_{i,j} X^i X^j \Gamma_{ij}^k(p) = 0$, for any k and any $(X^1, \ldots, X^n) \in \mathbb{R}^n$).
- iii) Deduce that there exists $c \in \mathbb{R}$ such that $|g_{ij}(x) \delta_{ij}| \leq c \cdot (d(x, p))^2$, for all $x \in B_{\frac{r}{2}}(p)$. (Hint: use the Koszul formula for Γ_{ij}^k).

Exercise 3

Let (M, g) be a Riemannian manifold, $p, q \in M$. Assume that $\gamma_i : [0, L] \to M$, i = 1, 2, are two different shortest curves from p to q, parametrized by arclength. Extend each geodesic γ_i to its maximal domain.

- i) Show that $\dot{\gamma}_1(L) \neq \dot{\gamma}_2(L)$.
- ii) Show that $\gamma_1|_{[0,L+\varepsilon]}$ is not a shortest curve for any $\varepsilon > 0$. (Hint: construct a shorter path from p to $\gamma_1(L+\varepsilon)$ by using a chart around q and the geodesic γ_2).

Exercise 4

Show that the following groups with the manifold structure induced from $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$ are Lie groups and determine their Lie algebras:

$$SO(n), GL(m, \mathbb{C}), U(m), SU(m), \text{ where } n = 2m.$$

Also determine the adjoint representations. Which of these Lie groups have a bi-invariant Riemannian metric?

Abgabe der Lösungen: Montag, den 22.04.2012 vor der Vorlesung.