Differential Geometry II
 Exercise Sheet no. 1

Exercise 1

Assume (M, g) and $\left(M^{\prime}, g^{\prime}\right)$ are surfaces with Riemannian metrics with negative Gauß curvature. Does the product metric on $M \times M^{\prime}$ has everywhere negative sectional curvature?

Exercise 2

Let (M, g) be a Riemannian manifold, $p \in M$. For $r<\operatorname{injrad}(p)$, we define the chart $\varphi:=\left(\exp _{p}| |_{B_{r}(p)}\right)^{-1}$, which defines the normal coordinates centered in p. As usual, we set

$$
g_{i j}(x):=g_{x}\left(\left.\frac{\partial}{\partial \varphi^{i}}\right|_{x},\left.\frac{\partial}{\partial \varphi^{j}}\right|_{x}\right), \quad \text { for } x \in B_{r}(p) \text {. }
$$

i) Show that if $X=\sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}}$, then $\dot{\gamma}_{X}(t)=\left.\sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}}\right|_{\gamma_{X}(t)}$.
ii) Show that the associated Christoffel symbols satisfy $\Gamma_{i j}^{k}(p)=0$. (Hint: use the geodesic equation $\nabla_{\dot{\gamma}_{X}} \dot{\gamma}_{X}=0$ to show that $\sum_{i, j} X^{i} X^{j} \Gamma_{i j}^{k}(p)=$ 0 , for any k and any $\left.\left(X^{1}, \ldots, X^{n}\right) \in \mathbb{R}^{n}\right)$.
iii) Deduce that there exists $c \in \mathbb{R}$ such that $\left|g_{i j}(x)-\delta_{i j}\right| \leq c \cdot(d(x, p))^{2}$, for all $x \in B_{\frac{r}{2}}(p)$. (Hint: use the Koszul formula for $\Gamma_{i j}^{k}$).

Exercise 3

Let (M, g) be a Riemannian manifold, $p, q \in M$. Assume that $\gamma_{i}:[0, L] \rightarrow M$, $i=1,2$, are two different shortest curves from p to q, parametrized by arclength. Extend each geodesic γ_{i} to its maximal domain.
i) Show that $\dot{\gamma}_{1}(L) \neq \dot{\gamma}_{2}(L)$.
ii) Show that $\left.\gamma_{1}\right|_{[0, L+\varepsilon]}$ is not a shortest curve for any $\varepsilon>0$. (Hint: construct a shorter path from p to $\gamma_{1}(L+\varepsilon)$ by using a chart around q and the geodesic γ_{2}).

Exercise 4

Show that the following groups with the manifold structure induced from $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^{2}}$ are Lie groups and determine their Lie algebras:

$$
\mathrm{SO}(n), \mathrm{GL}(m, \mathbb{C}), \mathrm{U}(m), \mathrm{SU}(m), \text { where } n=2 m
$$

Also determine the adjoint representations. Which of these Lie groups have a bi-invariant Riemannian metric?

Differential Geometry II
 Exercise Sheet no. 2

Exercise 1

Let Γ be a discrete group acting smoothly on a differentiable manifold M.
(a) Show that the action is proper if and only if both of the following conditions are satisfied:
(i) Each point $p \in M$ has a neighborhood U such that $(\gamma \cdot U) \cap U=\emptyset$, for all but finitely many $\gamma \in \Gamma$.
(ii) If $p, q \in M$ are not in the same Γ-orbit, there exist neighborhoods U of p and V of q such that $(\gamma \cdot U) \cap V=\emptyset$, for all $\gamma \in \Gamma$.
(b) If Γ acts moreover freely, then show that the action is proper if and only if for each $p, q \in M$ there exist neighborhoods U of p and V of q, such that for all $\gamma \in \Gamma$ with $q \neq \gamma \cdot p$ we have $(\gamma \cdot U) \cap V=\emptyset$.

Exercise 2

Let X be a left-invariant vector field on a Lie group G with unit element e.
i) Show that there exists a curve $\gamma: \mathbb{R} \rightarrow G$ satisfying $\gamma(0)=e$ and $\dot{\gamma}(t)=X_{\gamma(t)}$, for all $t \in \mathbb{R}$.
ii) Show that $\gamma(t+s)=\gamma(t) \cdot \gamma(s)$ and $\gamma(-t)=\gamma(t)^{-1}$, for all $s, t \in \mathbb{R}$.

Exercise 3

Let G and H be two Lie groups and e the unit element of G. If $f: G \rightarrow H$ is a smooth group homomorphism, then show that:
i) $d_{e} f: \mathfrak{g} \rightarrow \mathfrak{h}$ is surjective if and only if f is a submersion.
ii) $d_{e} f: \mathfrak{g} \rightarrow \mathfrak{h}$ is bijective if and only if f is locally diffeomorphic.
iii) If H is connected and $d_{e} f: \mathfrak{g} \rightarrow \mathfrak{h}$ is surjective, then f is surjective. (Hint: Show that $f(G)$ is open and closed. In order to prove that the image is closed one may cosider a sequence converging to any point in the closure of the imagine and translate it by left multiplication to the unit element of H.)

Exercise 4

For $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, consider the following action of \mathbb{R} on $M:=S^{1} \times S^{1}$:
$\mathbb{R} \times M \rightarrow M, \quad(t, p) \mapsto f_{t}(p), \quad$ where $\quad f_{t}(x, y):=\left(e^{i t} x, e^{i \alpha t} y\right)$.
(a) Show that each orbit of this action is dense in M and is neither closed nor a submanifold.
(b) Is the map $\Theta: \mathbb{R} \times M \rightarrow M \times M,(t, p) \mapsto\left(f_{t}(p), p\right)$ closed? Is the action proper?
(c) Is $\mathbb{R} \backslash M$ (equipped with the quotient topology) a Hausdorff space?

Hand in the solutions on Monday, April 29, 2013 before the lecture.

Differential Geometry II
 Exercise Sheet no. 3

Exercise 1

Let $\mathcal{H}_{3}:=\left\{\left.\left(\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right) \right\rvert\, x, y, z \in \mathbb{R}\right\}$ and $\Gamma:=\left\{\left.\left(\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right) \right\rvert\, x, y, z \in \mathbb{Z}\right\}$.
i) Show that \mathcal{H}_{3} and Γ are Lie groups. Does \mathcal{H}_{3} admit a bi-invariant Riemannian metric?
ii) Show that Γ acts on \mathcal{H}_{3} by left multiplication and this action is free and proper.
iii) Consider the following action of \mathbb{R} on \mathcal{H}_{3} :

$$
\mathbb{R} \times \mathcal{H}_{3} \rightarrow \mathcal{H}_{3}, \quad\left(\tilde{z},\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)\right) \mapsto\left(\begin{array}{ccc}
1 & x & z+\tilde{z} \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) .
$$

Show that this action descends to an action of $\mathbb{Z} \backslash \mathbb{R}$ on the quotient $\Gamma \backslash \mathcal{H}_{3}$ and the quotient manifold obtained by this action is the 2-dimensional torus.

Exercise 2

Let $S^{4 n+3} \subset \mathbb{H}^{n+1}$ be the unit sphere in the ($n+1$)-dimensional quaternionic vector space.
i) Show that $S^{3} \subset H$ acts smoothly, freely and properly on $S^{4 n+3}$.
ii) Give an atlas for the quotient manifold $H^{n}:=S^{3} \backslash S^{4 n+3}$. The manifold H^{n} is called the n-dimensional quaternionic projective space.

Exercise 3

i) Determine the Lie bracket $[\cdot, \cdot]$ on $\mathfrak{g l}(n, \mathbb{R})$, the Lie algebra of the general linear group $G L(n, \mathbb{R})$.
ii) For any Lie group G with adjoint representation $\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g})$, let $\mathrm{ad}: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$ denote the differential of Ad at the unit element of G, $\mathrm{ad}:=\mathrm{d}_{\mathbb{1}} \mathrm{Ad}$.
Show that for $G L(n, \mathbb{R})$, the map ad is given by $\operatorname{ad}(X)(Y)=[X, Y]$, for all $X, Y \in \mathfrak{g l}(n, \mathbb{R})$.
iii) Let $X \in \mathfrak{g l}(n, \mathbb{R}), \widetilde{X}$ the corresponding left-invariant vector field on $G L(n, \mathbb{R})$ and $\gamma: \mathbb{R} \rightarrow G L(n, \mathbb{R})$ be a curve with $\gamma(0)=\mathbb{1}_{n}, \dot{\gamma}(t)=\widetilde{X}_{\gamma(t)}$. Show that $\gamma(t)=\sum_{n=0}^{\infty} \frac{1}{n!}(t X)^{n}$.

Hand in the solutions on Monday, May 6, 2013 before the lecture.

Differential Geometry II
 Exercise Sheet no. 4

Exercise 1

Let $\pi: \bar{M} \rightarrow M$ be a covering of the manifold M, and let g be a Riemannian metric on M. We equip \bar{M} with the metric $\pi^{*} g$ defined as

$$
\begin{equation*}
\pi^{*} g_{p}(X, Y):=g_{\pi(p)}\left(\left(\mathrm{d}_{\pi(p)} \pi\right)(X),\left(\mathrm{d}_{\pi(p)} \pi\right)(Y)\right), \quad \forall p \in \bar{M}, \forall X, Y \in T_{p} \bar{M} \tag{1}
\end{equation*}
$$

i) Show that if M is compact, then $\left(\bar{M}, \pi^{*} g\right)$ is complete.
ii) Is it still true that $\left(\bar{M}, \pi^{*} g\right)$ is complete when $\pi: \bar{M} \rightarrow M$ is only locally diffeomorphic and surjective?

Exercise 2

Let $\pi: \bar{M} \rightarrow M$ be a surjective map which is locally diffeomorphic and let g, resp. $\pi^{*} g$ be Riemannian metrics on M, resp. \bar{M}, that are related by (1). We assume that $\left(M, \pi^{*} g\right)$ is complete. Show that:
i) (M, g) is also complete.
ii) The map π is a covering. Hint: Use the Hopf-Rinow Theorem.

Exercise 3

Let G be a Lie group, let g a bi-invariant Riemannian metric on G, and let $\operatorname{ad}: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$ be the map introduced in Exercise 3, ii) on Sheet no. 3.
i) Show that the map ad takes values into the skew-symmetric endomorphisms of $\left(\mathfrak{g}=T_{\mathbb{1}} G, g_{\mathbb{1}}\right)$. Moreover, one can show that $\operatorname{ad}(X)(Y)=$ [X, Y], for all $X, Y \in \mathfrak{g}$ (we assume this result, it is not part of the exercise to prove it).
ii) Use i) and the Koszul formula to show that the Levi-Civita connection of g is given by $\nabla_{X} Y=\frac{1}{2}[X, Y]$, for all left-invariant vector fields X, Y.
iii) (Bonus points) Show that the sectional curvature of g is nonnegative. (Hint: First compute the Riemannian curvature tensor using ii): $R(X, Y) Z=-\frac{1}{4}[[X, Y], Z]$, for all left-invariant vector fields X, Y, Z. Use also the Jacobi identity).

Hand in the solutions on Monday, May 13, 2013 before the lecture.

Differential Geometry II
 Exercise Sheet no. 5

Exercise 1

Let $S^{3} \subset \mathbb{H}$ be the unit sphere in the quaternion algebra. Consider the following map:

$$
\begin{gathered}
\theta: S^{3} \times S^{3} \rightarrow \operatorname{Aut}(\mathbb{H}) \\
(z, w) \mapsto(q \mapsto z q \bar{w}) .
\end{gathered}
$$

i) Show that θ defines a smooth action of $S^{3} \times S^{3}$ on \mathbb{H}, which preserves the standard norm on $\mathbb{H} \cong \mathbb{R}^{4}$.
ii) Compute the kernel of θ.
iii) Show that the differential of θ at the identity element is bijective.
iv) Conclude that θ is the universal covering of $\mathrm{SO}(4)$.

Exercise 2

Let \mathbb{Z} act on \mathbb{R}^{n} by $k \cdot x:=2^{k} x$, for $k \in \mathbb{Z}, x \in \mathbb{R}^{n}$.
i) Is this action proper on $M_{1}:=\mathbb{R}^{n}$, on $M_{2}:=\mathbb{R}^{n} \backslash\{0\}$, on $M_{3}:=$ $(0, \infty) \times(0, \infty) \times \mathbb{R}^{n-2} ?$
ii) Are the quotients $\mathbb{Z} \backslash M_{i}$ Hausdorff? Are they compact?

Exercise 3

For $0<m<n$, let $G(m, n)$ be the set of all m-dimensional subspaces in \mathbb{R}^{n}. Show that $\mathrm{GL}(n, \mathbb{R})$ and $\mathrm{O}(n, \mathbb{R})$ act transitively on $G(m, n)$. Determine the isotropy groups of $\mathbb{R}^{m} \times\{0\}$ for both actions, and write $G(m, n)$ as homogeneous space G / H where $G=\mathrm{GL}(n, \mathbb{R})$ or $G=\mathrm{O}(n, \mathbb{R})$.
What is the interpretation of
i) $\mathrm{O}(n, \mathbb{R}) /(\mathrm{O}(m, \mathbb{R}) \times \mathrm{O}(n-m, \mathbb{R}))$,
ii) $\mathrm{SO}(n, \mathbb{R}) /(\mathrm{SO}(m, \mathbb{R}) \times \mathrm{SO}(n-m, \mathbb{R}))$,
iii) $\mathrm{GL}_{+}(n, \mathbb{R}) /\left(\mathrm{GL}_{+}(m, \mathbb{R}) \times \mathrm{GL}_{+}(n-m, \mathbb{R})\right)$,
iv) $\operatorname{GL}(n, \mathbb{R}) /(\operatorname{GL}(m, \mathbb{R}) \times \operatorname{GL}(n-m, \mathbb{R}))$.

Hint: Be cautious with the isotropy group of $\mathrm{GL}(n, \mathbb{R})$, and its relation to iii) and iv).

Hand in the solutions on Monday, May 20, 2013 before the lecture.

Differential Geometry II
 Exercise Sheet no. 6

Exercise 1

The goal of this exercise is to show that there is no matrix $A \in \mathfrak{g l}(2, \mathbb{R}) \cong \mathbb{R}^{2 \times 2}$ such that $\exp (A)=\left(\begin{array}{cc}-2 & 0 \\ 0 & -1\end{array}\right)$. Deduce a contradiction by considering the following cases:
i) A is diagonalizable.
ii) A is triagonalizable, but not diagonalizable.
iii) A has no real eigenvalues. Hint: Consider the eigenvalues of A and of $\exp (A)$.

Bonus points question: If G is a connected compact Lie group, is the Lie group exponential map surjective?

Exercise 2

We define

$$
\mathcal{K}:=\left\{J \in \operatorname{End}\left(\mathbb{R}^{2 n}\right) \mid J^{2}=-\mathrm{Id}\right\} .
$$

The elements of \mathcal{K} are called complex structures on $\mathbb{R}^{2 n}$. The group $\mathrm{GL}(2 n, \mathbb{R})$ acts by conjugation on $\operatorname{End}\left(\mathbb{R}^{2 n}\right)$. Show that \mathcal{K} is an orbit of this action. Compute the isotropy group and write \mathcal{K} as a homogeneous space.

Exercise 3

Let $(V,[\cdot, \cdot])$ be a Lie algebra over a field K. An ideal is a vector subspace W, such that $[x, y] \in W$, for all $x \in W$ and $y \in V$. Show the following:
i) The quotient space V / W carries a unique Lie bracket, such that the projection $V \rightarrow V / W$ is a Lie algebra homomorphism.
ii) The kernel of a Lie algebra homomorphism is an ideal and conversely, each ideal is the kernel of a Lie algebra homomorphism.
iii) (Bonus points) Let now $K=\mathbb{R}$. Let G be a Lie group and H a normal subgroup of G that is also a submanifold. Then the Lie algebra of H is an ideal of the Lie algebra of G.

Hand in the solutions on Monday, May 27, 2013 before the lecture.

Differential Geometry II

Exercise Sheet no. 7

Exercise 1

The Killing form of a Lie algebra \mathfrak{g} is the function defined by:

$$
B: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}, \quad B(X, Y):=\operatorname{tr}(\operatorname{ad}(X) \circ \operatorname{ad}(Y))
$$

Show the following properties of the Killing form:
i) B is a symmetric bilinear form on \mathfrak{g}.
ii) If \mathfrak{g} is the Lie algebra of the Lie group G, then B is Ad-invariant:

$$
B(\operatorname{Ad}(\sigma) X, \operatorname{Ad}(\sigma) Y)=B(X, Y), \quad \forall \sigma \in G, \forall X, Y \in \mathfrak{g}
$$

Hint: Show first that if α is an automorphism of \mathfrak{g}, i.e. a linear isomorphism α satisfying $\alpha([X, Y])=[\alpha(X), \alpha(Y)]$ for all $X, Y \in \mathfrak{g}$, then $\operatorname{ad}(\alpha(X))=\alpha \circ \operatorname{ad}(X) \circ \alpha^{-1}$, for any $X \in \mathfrak{g}$.
iii) For each $Z \in \mathfrak{g}, \operatorname{ad}(Z)$ is skew-symmetric with respect to B :

$$
B(\operatorname{ad}(Z) X, Y)=-B(X, \operatorname{ad}(Z) X), \forall X, Y \in \mathfrak{g} .
$$

Exercise 2

Let (M, g) be a Riemannian manifold of constant sectional curvature κ and let $\gamma:[0, \ell] \rightarrow M$ be a geodesic parametrized by arc-length. Let J be a vector field along γ, normal to γ^{\prime}.
i) Show that the Jacobi equation can be written as $J^{\prime \prime}+\kappa J=0$.
ii) Let V be a parallel unit vector field along γ normal to γ^{\prime}. Determine the Jacobi vector field J satisfying the initial conditions $J(0)=0$ and $J^{\prime}(0)=V(0)$.

Exercise 3

i) Let (M, g) be a Riemannian manifold and $\gamma: I \rightarrow M$ a geodesic. Show that if M is 2-dimensional, then the relation for points of γ to be conjugated to each other along γ is transitive. More precisely, for any $t_{i} \in I, i=1,2,3$, such that $\gamma\left(t_{1}\right)$ is conjugated to $\gamma\left(t_{2}\right)$ and $\gamma\left(t_{2}\right)$ is conjugated to $\gamma\left(t_{3}\right)$, it follows that $\gamma\left(t_{1}\right)$ is conjugated to $\gamma\left(t_{3}\right)$.
ii) Show that the statement in i) is not true for higher dimensions, by considering for instance the Riemannian manifold $\left(S^{2} \times S^{2}, g_{s t d} \oplus g_{s t d}\right)$, that is the Riemannian product of two spheres with the standard metric and the following geodesic $\gamma(t)=(\cos (t), 0, \sin (t), \cos (\pi t), 0, \sin (\pi t)) \in$ $S^{2} \times S^{2} \subset \mathbb{R}^{3} \times \mathbb{R}^{3}=\mathbb{R}^{6}$.

Hand in the solutions on Monday, June 3, 2013 before the lecture.

Differential Geometry II
 Exercise Sheet no. 8

Exercise 1

Let G be a Lie group which acts isometrically, freely and properly on a Riemannian manifold (M, g). (An action is isometric if l_{σ} is an isometry for any $\sigma \in G$.) Show that there exists a metric on the quotient manifold $G \backslash M$ such that the projection $\pi: M \rightarrow G \backslash M$ is a Riemannian submersion. (A submersion $\pi: M \rightarrow N$ between Riemannian manifolds is called a Riemannian submersion if $d_{x} \pi$ is an isometry from the orthogonal complement of $\operatorname{ker} d_{x} \pi$ in $T_{x} M$ to $T_{\pi(x)} N$ for any $x \in M$.)

Exercise 2

Let $\pi:(M, g) \rightarrow(N, h)$ be a Riemannian submersion.
i) Let γ be a geodesic in (N, h). Show that any horizontal lift of γ is a geodesic in (M, g).
ii) Let $\tau:[a, b] \rightarrow M$ be a geodesic in (M, g) such that $\dot{\tau}(a)$ is horizontal. Show that $\dot{\tau}(t)$ is horizontal for all $t \in[a, b]$. Conclude that if a horizontal lift $\widetilde{\gamma}$ of a curve γ is a geodesic in (M, g), then γ is a geodesic in (N, h).
iii) Let $\pi: S^{2 n+1} \rightarrow \mathbb{C} P^{n}$ be the projection $z \mapsto[z]$, which defines the so-called Hopf fibration. Consider on $\mathbb{C} P^{n}$ the Riemannian metric that makes π a Riemannian submersion, where $S^{2 n+1}$ carries the standard metric. This means $\mathbb{C} P^{n}$ carries the metric defined vai Exercise 1. This metric on $\mathbb{C} P^{n}$ is called the Fubini-Study metric of $\mathbb{C} P^{n}$.
Show that the geodesics parametrized by arclength in $\mathbb{C} P^{n}$ are of the form $\gamma(t)=[\cos t v+\sin t w]$, where $v, w \in S^{2 n+1} \subset \mathbb{C}^{n+1}$ with $\sum_{j=1}^{n+1} v_{j} \bar{w}_{j}=$ 0 . Show furthermore that in $\mathbb{C} P^{1}$ the points $[(1,0)]$ and $[(0,1)]$ are conjugated along a geodesic.

Exercise 3

i) Let V and W be two m-dimensional real vector spaces and A_{t} a smooth family of homomorphisms, where t is a real parameter. Let $A_{t}^{\prime}=\frac{d}{d t} A_{t}$. Assume that

$$
\operatorname{Im}\left(A_{0}\right) \oplus A_{0}^{\prime}\left(\operatorname{Ker}\left(A_{0}\right)\right)=W
$$

Show that there exists an $\varepsilon>0$, such that A_{t} has rank m for all $t \in(-\varepsilon, 0) \cup(0, \varepsilon)$.
ii) Let J_{1} and J_{2} be two Jacobi vector fields along a geodesic on a Riemannian manifold. Show that the function

$$
t \mapsto\left\langle J_{1}(t), J_{2}^{\prime}(t)\right\rangle-\left\langle J_{1}^{\prime}(t), J_{2}(t)\right\rangle
$$

is constant.
iii) Let $\gamma:[0, b) \rightarrow M$ be a geodesic on a Riemannian manifold. Show that the set

$$
\{t \in[0, b) \mid t \text { is conjugated to } 0\}
$$

is closed and discrete in $[0, b)$. Hint: Use i) and ii).

Exercise 4

Let $\pi:(M, g) \rightarrow(N, h)$ be a Riemannian submersion. The vectors in the kernel of $d \pi$ are called vertical. For each $X \in \Gamma(T N)$, let \bar{X} denote the horizontal lift of X, i.e. $\bar{X} \in \Gamma(T M)$ such that $d \pi \circ \bar{X}=X \circ \pi$ and \bar{X} is orthogonal in each point to the kernel of $d \pi$.
i) Show that the vertical part of $[\bar{X}, \bar{Y}]$ in $p \in M$, denoted by $[\bar{X}, \bar{Y}]_{p}^{v}$, depends only on $\bar{X}(p)$ and $\bar{Y}(p)$.
ii) Let $X \in \Gamma(T N), \eta \in \Gamma(T M)$ and η is vertical. Show that $[\eta, \bar{X}]$ is vertical.
iii) Compute $\overline{[X, Y]}-[\bar{X}, \bar{Y}]$ and $\nabla_{\bar{X}}^{M} \bar{Y}-\overline{\nabla_{X}^{N} Y}$, for $X, Y \in \Gamma(T N)$.
iv) Assume that $\bar{X}(p)$ and $\bar{Y}(p)$ are orthonormal. Let E be the plane spanned by $X(\pi(p))$ and $Y(\pi(p))$ and \bar{E} be the plane spanned by $\bar{X}(p)$ and $\bar{Y}(p)$. Show the following formula for the sectional curvatures of (M, g) and (N, h):

$$
K^{N, h}(E)=K^{M, g}(\bar{E})+\frac{3}{4}\left\|[\bar{X}, \bar{Y}]_{p}^{v}\right\|^{2} .
$$

Hand in the solutions on Monday, June 10, 2013 before the lecture.

Differential Geometry II
 Exercise Sheet no. 9

Exercise 1

Let (M, g) be a connected, complete and simply-connected Riemannian manifold with sectional curvature $K \leq 0$. Show that there is a unique geodesic between any two points on M. Hint: use Cartan-Hadamard Theorem.

Exercise 2

Let M be a connected manifold and $p \in M$. We consider the map defined in the lecture between the fundamental group of M and the set of free homotopy classes of loops:

$$
\begin{gathered}
F: \pi_{1}(M, p) \rightarrow \pi_{o} \mathcal{L}(M), \\
{[\gamma] \mapsto[\gamma]_{\text {free }} .}
\end{gathered}
$$

Show the following:
i) F is surjective.
ii) F induces a well-defined map on the set of conjugacy classes in $\pi_{1}(M, p)$, that is $\left[\gamma \tau \gamma^{-1}\right]_{\text {free }}=[\tau]_{\text {free }}$, for any $\gamma, \tau \in \pi_{1}(M, p)$.
iii) The map induced by F on the set of conjugacy classes in $\pi_{1}(M, p)$ is injective.

Exercise 3

We consider the Hopf fibration and the Fubini-Study metric on $\mathbb{C} P^{n}$ introduced in Exercise 2, (iii) on Sheet no. 8. We use the same notation as in this exercise, and again X^{v} is the vertical part of X. The vertical vectors of the Hopf fibration in the point $z \in S^{2 n+1}$ are of the form $\lambda i z, \lambda \in \mathbb{R}$.
For $X, Y \in \mathbb{C}^{n+1}$, we define $\langle X, Y\rangle_{\mathbb{C}}:=\sum_{j=1}^{n+1} X_{j} \bar{Y}_{j}$ and $\langle X, Y\rangle_{\mathbb{R}}:=\operatorname{Re}\left(\sum_{j=1}^{n+1} X_{j} \bar{Y}_{j}\right)$.
Then it holds $\langle X, Y\rangle_{\mathbb{C}}=\langle X, Y\rangle_{\mathbb{R}}+i\langle X, i Y\rangle_{\mathbb{R}}$. Show the following:
i) For any $\widetilde{X}_{0} \in \mathbb{C}^{n+1}$, the map $w \mapsto \widetilde{X}_{w}:=\widetilde{X}_{0}-\left\langle\widetilde{X}_{0}, w\right\rangle_{\mathbb{C}} w$ is a welldefined vector field on $S^{2 n+1}$.
ii) \tilde{X} is horizontal everywhere.
iii) Each point $p \in \mathbb{C} P^{n}$ admits an open neighborhood U and a smooth map $f: \pi^{-1}(U) \rightarrow S^{1}$, such that $f(\lambda z)=\lambda f(z)$, for all $z \in \pi^{-1}(U)$ and $\lambda \in S^{1}$.
iv) $f \widetilde{X}$ is a horizontal lift of a vector field $X \in \Gamma(T U)$.
v) For a fixed $z \in S^{2 n+1}$ assume that $\left\langle\widetilde{X}_{0}, z\right\rangle_{\mathbb{C}}=\left\langle\widetilde{Y}_{0}, z\right\rangle_{\mathbb{C}}=0$. For the Levi-Civita connection ∇ of $S^{2 n+1}$ it holds:

$$
\left.\nabla_{\widetilde{Y}_{w}} \widetilde{X}_{w}\right|_{w=z}=-\left(\operatorname{Im}\left(\left\langle\widetilde{X}_{0}, \widetilde{Y}_{0}\right\rangle_{\mathbb{C}}\right)\right) i z
$$

vi) Choose f such that $f\left(z_{0}\right)=1$ for a $z_{0} \in \pi^{-1}(p)$. Conclude that $\left.[f \widetilde{Y}, f \widetilde{X}]^{v}\right|_{z_{0}}=-2\left(\operatorname{Im}\left\langle\widetilde{X}_{0}, \widetilde{Y}_{0}\right\rangle_{\mathbb{C}}\right) i z_{0}$.
vii) The sectional curvature K of $\mathbb{C} P^{n}$ satisfies: $1 \leq K \leq 4$. For which planes is $K=4$ and for which planes is $K=1$?

Hand in the solutions on Monday, June 17, 2013 before the lecture.

Prof. Dr. Bernd Ammann

Differential Geometry II

Exercise Sheet no. 10

Exercise 1

Determine $\mathcal{C}_{p}^{\text {tan }} M$, and $\mathcal{C}_{p} M$ for
(a) $M=\mathbb{R}^{2} / \Gamma$, where Γ is the subgroup of \mathbb{R}^{2} generated by $\binom{1}{0}$ and $\binom{0}{2}$, and $p:=[0]$.
(b) $M=\mathbb{R} P^{m}=S^{m} /\{ \pm 1\}$ with the quotient metric, and $p:=\left[e_{1}\right]$.

Exercise 2

Let $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=e^{-z^{2}}\right\}$. Show that M is a smooth surface, and that M is complete, $\operatorname{vol}(M)<\infty, \operatorname{injrad}(M)=0, \operatorname{diam}(M)=\infty$.

Exercise 3

Let M be a complete connected Riemannian manifold, $p \in M$ fixed. We define $\operatorname{diam} M:=\sup \{d(x, y) \mid x, y \in M\}$. Show
(a) $\operatorname{diam} M=\sup _{X \in S M} s(X)$
(b) $\operatorname{injrad}(p)=\min _{X \in S_{p} M} s(X)$
(c) $\operatorname{injrad}(M)=\inf _{X \in S M} s(X)$
(d) $\sup _{X \in S M} s(X)=\infty$ if and only if there is for all $p \in M$ an $X \in S_{p} M$ with $s(X)=\infty$.
Hint: Use Exercise no. 3 on Sheet no. 9 of Differential Geometry I
(e) Give an example of a complete Riemannian manifold such that $\sup _{X \in S_{p} M} s(X)$ depends on p.

Exercise 4

We consider $S^{3} \subset \mathbb{C}^{2}$ endowed with the standard metric, and $\Gamma:=\{1, i,-1,-i\}$ which acts freely und isometrically on S^{3}. Let $M:=S^{3} / \Gamma, \pi: S^{3} \rightarrow M$ the corresponding projection and $p:=\pi\left(e_{1}\right)=e_{1} \bmod \Gamma \in M$. Show that for the cut locus \mathcal{C}_{p} the following holds:

$$
\begin{gathered}
\mathcal{C}_{p}=\left\{\pi(x) \mid x \in S^{3} \text { with } d\left(x, e_{1}\right)=d\left(x, i e_{1}\right)\right\} \\
=\left\{\left.\pi\left(\frac{(1+i) r}{\sqrt{2}} e_{1}+v e_{2}\right) \right\rvert\, r \in[0,1], \quad v \in \mathbb{C} \text { with } r^{2}+|v|^{2}=1\right\} .
\end{gathered}
$$

Answer without justification: Where are the minima and maxima of the function $s: S_{p} M \rightarrow(0, \infty)$?
Bonus question: Where is \mathcal{C}_{p} a smooth hypersurface and where not?

Hand in the solutions on Monday, June 24, 2013 before the lecture.

Differential Geometry II

Exercise Sheet no. 11

Exercise 1

Let M be a complete Riemannian manifold; let N be a submanifold and a closed subset of M. For any $p_{0} \in M$ we define its distance to N as $d\left(p_{0}, N\right):=$ $\inf _{q \in N} d\left(p_{0}, q\right)$. Show the following:
i) There exists a point $q_{0} \in N$, such that $d\left(p_{0}, N\right)=d\left(p_{0}, q_{0}\right)$.
ii) If $p_{0} \in M \backslash N$, then a minimizing geodesic joining p_{0} and q_{0} is orthogonal to N at q_{0}.
Hint: Use a variation of the geodesic with curves starting at p_{0} and ending at points in N.

Exercise 2

Let N be a submanifold of a Riemannian manifold (M, g). The normal exponential map of N, $\exp ^{\perp}: T N^{\perp} \rightarrow M$ is defined as the restriction of the exponential map exp : $T M \rightarrow M,(p, v) \mapsto \exp _{p} v$ to points $q \in N$ and vectors $w \in\left(T_{q} N\right)^{\perp}$. Show that $p \in M$ is a focal point of $N \subset M$ if and only if p is a critical value of $\exp ^{\perp}$.
Hint: For " \Rightarrow " consider for a suitable variation $\gamma:(-\varepsilon, \varepsilon) \times[0, \ell] \rightarrow M$ with $\alpha(s):=\gamma(s, 0) \subset N$ and $V(s):=\left.\frac{\nabla}{d t} \gamma\right|_{(s, 0)}$ the curve $c(s):=(\alpha(s), \ell V(s))$.
For " \Leftarrow " consider for a suitable curve $c(s)=(\alpha(s), \ell V(s))$ in $T N^{\perp}$ the variation $\gamma(s, t)=\exp _{\alpha(s)}(t V(s))$.

Exercise 3

Let N be a submanifold of a flat manifold (M, g) and γ be a geodesic in M with $\gamma(0) \in N$ and $\dot{\gamma}(0) \perp T_{\gamma(0)} N$. Show that $\gamma\left(\frac{1}{\lambda}\right)$ is a focal point of N if and only if λ is a non-zero eigenvalue of $S_{\dot{\gamma}(0)}$.
Hint: For " \Rightarrow " consider $X(t):=(1-\lambda t) E(t)$, where E is a parallel vector field along γ and $S_{\dot{\gamma}(0)}(E(0))=\lambda E(0)$.

Hand in the solutions on Monday, July 1, 2013 before the lecture.

Prof. Dr. Bernd Ammann

Differential Geometry II

Exercise Sheet no. 12

Exercise 1

Let (M, g) be a Riemannian manifold, whose sectional curvature K satisfies the inequalities:

$$
0<L \leq K \leq H,
$$

for some positive constants L and H. For a geodesic $\gamma:[0, \ell] \rightarrow M$, parametrized by arclength, we define

$$
d:=\min \left\{t>0 \mid \gamma(t) \text { is conjugated to } \gamma(0) \text { along }\left.\gamma\right|_{[0, t]}\right\} .
$$

Show

$$
\frac{\pi}{\sqrt{H}} \leq d \leq \frac{\pi}{\sqrt{L}}
$$

Hint: Use the First Rauch Comparison Theorem.

Exercise 2

Let (M, g) be a complete Riemannian manifold with sectional curvature $K \geq 0$. Let Γ be a discrete group without 2 -torsion (i.e. $\gamma^{2} \neq e$, for any $\gamma \in \Gamma \backslash\{e\}$, where e is the identity element of Γ), acting isometrically, freely and properly on M. For a point $p \in M$, let $\gamma_{0} \in \Gamma$ be an element with $d\left(p, \gamma_{0} p\right)=\min _{\gamma \in \Gamma \backslash\{e\}} d(p, \gamma p)$.
We choose a minimal geodesics c_{1} which connects p to $\gamma_{0} p$, and a geodesic c_{2} which connects p to $\gamma_{0}^{-1} p$. Show that c_{1} and c_{2} form at p an angle $\alpha \geq \frac{\pi}{3}$.

Exercise 3

Let (M, g) be a complete Riemannian manifold with sectional curvature $K \geq 0$ and let $\gamma, \sigma:[0, \infty) \rightarrow M$ be two geodesics, parametrized by arclength, with $\gamma(0)=\sigma(0)$. We assume that γ is a ray and that $\alpha:=$ $\varangle(\dot{\gamma}(0), \dot{\sigma}(0))<\frac{\pi}{2}$.
Show that $\lim _{t \rightarrow \infty} d(\sigma(0), \sigma(t))=\infty$.
Hint: Using the triangle inequality, show first that it is enough to prove: $\lim _{s \rightarrow \infty}(d(\gamma(s), \sigma(t))-d(\gamma(s), \gamma(0))) \geq t \cos \alpha$, for any fixed $t \geq 0$. Then apply Toponogov's Theorem (A).

Hand in the solutions on Monday, July 15, 2013 before the lecture.

