SoSe 2013 15.04.2013

Differential Geometry II Exercise Sheet no. 1

Exercise 1

Assume (M, g) and (M', g') are surfaces with Riemannian metrics with negative Gauß curvature. Does the product metric on $M \times M'$ has everywhere negative sectional curvature?

Exercise 2

Let (M, g) be a Riemannian manifold, $p \in M$. For r < injrad(p), we define the chart $\varphi := (\exp_p|_{B_r(p)})^{-1}$, which defines the normal coordinates centered in p. As usual, we set

$$g_{ij}(x) := g_x(\frac{\partial}{\partial \varphi^i}|_x, \frac{\partial}{\partial \varphi^j}|_x), \quad \text{ for } x \in B_r(p).$$

- i) Show that if $X = \sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}}$, then $\dot{\gamma}_{X}(t) = \sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}}|_{\gamma_{X}(t)}$.
- ii) Show that the associated Christoffel symbols satisfy $\Gamma_{ij}^k(p) = 0$. (Hint: use the geodesic equation $\nabla_{\dot{\gamma}_X} \dot{\gamma}_X = 0$ to show that $\sum_{i,j} X^i X^j \Gamma_{ij}^k(p) = 0$, for any k and any $(X^1, \ldots, X^n) \in \mathbb{R}^n$).
- iii) Deduce that there exists $c \in \mathbb{R}$ such that $|g_{ij}(x) \delta_{ij}| \leq c \cdot (d(x, p))^2$, for all $x \in B_{\frac{r}{2}}(p)$. (Hint: use the Koszul formula for Γ_{ij}^k).

Exercise 3

Let (M, g) be a Riemannian manifold, $p, q \in M$. Assume that $\gamma_i : [0, L] \to M$, i = 1, 2, are two different shortest curves from p to q, parametrized by arclength. Extend each geodesic γ_i to its maximal domain.

- i) Show that $\dot{\gamma}_1(L) \neq \dot{\gamma}_2(L)$.
- ii) Show that $\gamma_1|_{[0,L+\varepsilon]}$ is not a shortest curve for any $\varepsilon > 0$. (Hint: construct a shorter path from p to $\gamma_1(L+\varepsilon)$ by using a chart around q and the geodesic γ_2).

Exercise 4

Show that the following groups with the manifold structure induced from $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$ are Lie groups and determine their Lie algebras:

$$SO(n), GL(m, \mathbb{C}), U(m), SU(m), \text{ where } n = 2m.$$

Also determine the adjoint representations. Which of these Lie groups have a bi-invariant Riemannian metric?

Abgabe der Lösungen: Montag, den 22.04.2012 vor der Vorlesung.

Differential Geometry II Exercise Sheet no. 2

Exercise 1

Let Γ be a discrete group acting smoothly on a differentiable manifold M.

- (a) Show that the action is proper if and only if both of the following conditions are satisfied:
 - (i) Each point $p \in M$ has a neighborhood U such that $(\gamma \cdot U) \cap U = \emptyset$, for all but finitely many $\gamma \in \Gamma$.
 - (ii) If $p, q \in M$ are not in the same Γ -orbit, there exist neighborhoods U of p and V of q such that $(\gamma \cdot U) \cap V = \emptyset$, for all $\gamma \in \Gamma$.
- (b) If Γ acts moreover freely, then show that the action is proper if and only if for each $p, q \in M$ there exist neighborhoods U of p and V of q, such that for all $\gamma \in \Gamma$ with $q \neq \gamma \cdot p$ we have $(\gamma \cdot U) \cap V = \emptyset$.

Exercise 2

Let X be a left-invariant vector field on a Lie group G with unit element e.

- i) Show that there exists a curve $\gamma : \mathbb{R} \to G$ satisfying $\gamma(0) = e$ and $\dot{\gamma}(t) = X_{\gamma(t)}$, for all $t \in \mathbb{R}$.
- ii) Show that $\gamma(t+s) = \gamma(t) \cdot \gamma(s)$ and $\gamma(-t) = \gamma(t)^{-1}$, for all $s, t \in \mathbb{R}$.

Exercise 3

Let G and H be two Lie groups and e the unit element of G. If $f: G \to H$ is a smooth group homomorphism, then show that:

- i) $d_e f : \mathfrak{g} \to \mathfrak{h}$ is surjective if and only if f is a submersion.
- ii) $d_e f : \mathfrak{g} \to \mathfrak{h}$ is bijective if and only if f is locally diffeomorphic.
- iii) If H is connected and $d_e f : \mathfrak{g} \to \mathfrak{h}$ is surjective, then f is surjective. (Hint: Show that f(G) is open and closed. In order to prove that the image is closed one may cosider a sequence converging to any point in the closure of the imagine and translate it by left multiplication to the unit element of H.)

Exercise 4

For $\alpha \in \mathbb{R} \smallsetminus \mathbb{Q}$, consider the following action of \mathbb{R} on $M := S^1 \times S^1$:

 $\mathbb{R} \times M \to M, \quad (t,p) \mapsto f_t(p), \quad \text{where} \quad f_t(x,y) := (e^{it}x, e^{i\alpha t}y).$

- (a) Show that each orbit of this action is dense in M and is neither closed nor a submanifold.
- (b) Is the map $\Theta : \mathbb{R} \times M \to M \times M$, $(t, p) \mapsto (f_t(p), p)$ closed? Is the action proper?
- (c) Is $\mathbb{R}\setminus M$ (equipped with the quotient topology) a Hausdorff space?

Hand in the solutions on Monday, April 29, 2013 before the lecture.

SoSe 2013 29.04.2013

Differential Geometry II Exercise Sheet no. 3

Exercise 1

Let
$$\mathcal{H}_3 := \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} | x, y, z \in \mathbb{R} \right\}$$
 and $\Gamma := \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} | x, y, z \in \mathbb{Z} \right\}.$

- i) Show that \mathcal{H}_3 and Γ are Lie groups. Does \mathcal{H}_3 admit a bi-invariant Riemannian metric?
- ii) Show that Γ acts on \mathcal{H}_3 by left multiplication and this action is free and proper.
- iii) Consider the following action of \mathbb{R} on \mathcal{H}_3 :

$$\mathbb{R} \times \mathcal{H}_3 \to \mathcal{H}_3, \quad \left(\tilde{z}, \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}\right) \mapsto \begin{pmatrix} 1 & x & z + \tilde{z} \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}.$$

Show that this action descends to an action of $\mathbb{Z}\setminus\mathbb{R}$ on the quotient $\Gamma\setminus\mathcal{H}_3$ and the quotient manifold obtained by this action is the 2-dimensional torus.

Exercise 2

Let $S^{4n+3} \subset \mathbb{H}^{n+1}$ be the unit sphere in the (n+1)-dimensional quaternionic vector space.

- i) Show that $S^3 \subset \mathbb{H}$ acts smoothly, freely and properly on S^{4n+3} .
- ii) Give an atlas for the quotient manifold $\mathbb{H}P^n := S^3 \setminus S^{4n+3}$. The manifold $\mathbb{H}P^n$ is called the *n*-dimensional quaternionic projective space.

Exercise 3

- i) Determine the Lie bracket $[\cdot, \cdot]$ on $\mathfrak{gl}(n, \mathbb{R})$, the Lie algebra of the general linear group $GL(n, \mathbb{R})$.
- ii) For any Lie group G with adjoint representation Ad : G → Aut(g), let ad : g → End(g) denote the differential of Ad at the unit element of G, ad := d₁Ad.
 Show that for GL(n, ℝ), the map ad is given by ad(X)(Y) = [X, Y], for all X, Y ∈ gl(n, ℝ).
- iii) Let $X \in \mathfrak{gl}(n, \mathbb{R})$, \widetilde{X} the corresponding left-invariant vector field on $GL(n, \mathbb{R})$ and $\gamma : \mathbb{R} \to GL(n, \mathbb{R})$ be a curve with $\gamma(0) = \mathbb{1}_n$, $\dot{\gamma}(t) = \widetilde{X}_{\gamma(t)}$. Show that $\gamma(t) = \sum_{n=0}^{\infty} \frac{1}{n!} (tX)^n$.

Hand in the solutions on Monday, May 6, 2013 before the lecture.

Differential Geometry II Exercise Sheet no. 4

Exercise 1

Let $\pi : \overline{M} \to M$ be a covering of the manifold M, and let g be a Riemannian metric on M. We equip \overline{M} with the metric π^*g defined as

$$\pi^* g_p(X, Y) := g_{\pi(p)}((\mathrm{d}_{\pi(p)}\pi)(X), (\mathrm{d}_{\pi(p)}\pi)(Y)), \quad \forall p \in \overline{M}, \, \forall X, Y \in T_p \overline{M}.$$
(1)

- i) Show that if M is compact, then $(\overline{M}, \pi^* g)$ is complete.
- ii) Is it still true that $(\overline{M}, \pi^* g)$ is complete when $\pi : \overline{M} \to M$ is only locally diffeomorphic and surjective?

Exercise 2

Let $\pi : \overline{M} \to M$ be a surjective map which is locally diffeomorphic and let g, resp. π^*g be Riemannian metrics on M, resp. \overline{M} , that are related by (1). We assume that (\overline{M}, π^*g) is complete. Show that:

- i) (M, g) is also complete.
- ii) The map π is a covering. Hint: Use the Hopf-Rinow Theorem.

Exercise 3

Let G be a Lie group, let g a bi-invariant Riemannian metric on G, and let $ad : \mathfrak{g} \to End(\mathfrak{g})$ be the map introduced in Exercise 3, ii) on Sheet no. 3.

- i) Show that the map ad takes values into the skew-symmetric endomorphisms of $(\mathfrak{g} = T_{\mathfrak{l}}G, g_{\mathfrak{l}})$. Moreover, one can show that $\operatorname{ad}(X)(Y) = [X, Y]$, for all $X, Y \in \mathfrak{g}$ (we assume this result, it is not part of the exercise to prove it).
- ii) Use i) and the Koszul formula to show that the Levi-Civita connection of g is given by $\nabla_X Y = \frac{1}{2}[X, Y]$, for all left-invariant vector fields X, Y.
- iii) (Bonus points) Show that the sectional curvature of g is nonnegative. (Hint: First compute the Riemannian curvature tensor using ii): $R(X,Y)Z = -\frac{1}{4}[[X,Y],Z]$, for all left-invariant vector fields X, Y, Z. Use also the Jacobi identity).

Hand in the solutions on Monday, May 13, 2013 before the lecture.

SoSe 2013 13.05.2013

Differential Geometry II Exercise Sheet no. 5

Exercise 1

Let $S^3 \subset \mathbb{H}$ be the unit sphere in the quaternion algebra. Consider the following map:

$$\theta: S^3 \times S^3 \to \operatorname{Aut}(\mathbb{H})$$
$$(z, w) \mapsto (q \mapsto zq\overline{w}).$$

- i) Show that θ defines a smooth action of $S^3 \times S^3$ on \mathbb{H} , which preserves the standard norm on $\mathbb{H} \cong \mathbb{R}^4$.
- ii) Compute the kernel of θ .
- iii) Show that the differential of θ at the identity element is bijective.
- iv) Conclude that θ is the universal covering of SO(4).

Exercise 2

Let \mathbb{Z} act on \mathbb{R}^n by $k \cdot x := 2^k x$, for $k \in \mathbb{Z}, x \in \mathbb{R}^n$.

- i) Is this action proper on $M_1 := \mathbb{R}^n$, on $M_2 := \mathbb{R}^n \setminus \{0\}$, on $M_3 := (0, \infty) \times (0, \infty) \times \mathbb{R}^{n-2}$?
- ii) Are the quotients $\mathbb{Z} \setminus M_i$ Hausdorff? Are they compact?

Exercise 3

For 0 < m < n, let G(m, n) be the set of all *m*-dimensional subspaces in \mathbb{R}^n . Show that $\operatorname{GL}(n, \mathbb{R})$ and $\operatorname{O}(n, \mathbb{R})$ act transitively on G(m, n). Determine the isotropy groups of $\mathbb{R}^m \times \{0\}$ for both actions, and write G(m, n) as homogeneous space G/H where $G = \operatorname{GL}(n, \mathbb{R})$ or $G = \operatorname{O}(n, \mathbb{R})$. What is the interpretation of

- i) $O(n, \mathbb{R})/(O(m, \mathbb{R}) \times O(n m, \mathbb{R})),$
- ii) $\operatorname{SO}(n, \mathbb{R})/(\operatorname{SO}(m, \mathbb{R}) \times \operatorname{SO}(n m, \mathbb{R})),$
- iii) $\operatorname{GL}_{+}(n,\mathbb{R})/(\operatorname{GL}_{+}(m,\mathbb{R})\times\operatorname{GL}_{+}(n-m,\mathbb{R})),$
- iv) $\operatorname{GL}(n,\mathbb{R})/(\operatorname{GL}(m,\mathbb{R})\times\operatorname{GL}(n-m,\mathbb{R})).$

Hint: Be cautious with the isotropy group of $GL(n, \mathbb{R})$, and its relation to iii) and iv).

Hand in the solutions on Monday, May 20, 2013 before the lecture.

Differential Geometry II Exercise Sheet no. 6

Exercise 1

The goal of this exercise is to show that there is no matrix $A \in \mathfrak{gl}(2, \mathbb{R}) \cong \mathbb{R}^{2 \times 2}$ such that $\exp(A) = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}$. Deduce a contradiction by considering the following cases:

- i) A is diagonalizable.
- ii) A is triagonalizable, but not diagonalizable.
- iii) A has no real eigenvalues. Hint: Consider the eigenvalues of A and of $\exp(A)$.

Bonus points question: If G is a connected compact Lie group, is the Lie group exponential map surjective?

Exercise 2

We define

$$\mathcal{K} := \{ J \in \operatorname{End}(\mathbb{R}^{2n}) \, | \, J^2 = -\operatorname{Id} \}.$$

The elements of \mathcal{K} are called complex structures on \mathbb{R}^{2n} . The group $\operatorname{GL}(2n, \mathbb{R})$ acts by conjugation on $\operatorname{End}(\mathbb{R}^{2n})$. Show that \mathcal{K} is an orbit of this action. Compute the isotropy group and write \mathcal{K} as a homogeneous space.

Exercise 3

Let $(V, [\cdot, \cdot])$ be a Lie algebra over a field K. An ideal is a vector subspace W, such that $[x, y] \in W$, for all $x \in W$ and $y \in V$. Show the following:

- i) The quotient space V/W carries a unique Lie bracket, such that the projection $V \to V/W$ is a Lie algebra homomorphism.
- ii) The kernel of a Lie algebra homomorphism is an ideal and conversely, each ideal is the kernel of a Lie algebra homomorphism.
- iii) (Bonus points) Let now $K = \mathbb{R}$. Let G be a Lie group and H a normal subgroup of G that is also a submanifold. Then the Lie algebra of H is an ideal of the Lie algebra of G.

Hand in the solutions on Monday, May 27, 2013 before the lecture.

SoSe 2013 27.05.2013

Differential Geometry II Exercise Sheet no. 7

Exercise 1

The Killing form of a Lie algebra \mathfrak{g} is the function defined by:

$$B: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}, \quad B(X, Y) := \operatorname{tr}(\operatorname{ad}(X) \circ \operatorname{ad}(Y)).$$

Show the following properties of the Killing form:

- i) B is a symmetric bilinear form on \mathfrak{g} .
- ii) If \mathfrak{g} is the Lie algebra of the Lie group G, then B is Ad-invariant:

 $B(\mathrm{Ad}(\sigma)X,\mathrm{Ad}(\sigma)Y) = B(X,Y), \quad \forall \sigma \in G, \, \forall X,Y \in \mathfrak{g}.$

Hint: Show first that if α is an automorphism of \mathfrak{g} , i.e. a linear isomorphism α satisfying $\alpha([X, Y]) = [\alpha(X), \alpha(Y)]$ for all $X, Y \in \mathfrak{g}$, then $\operatorname{ad}(\alpha(X)) = \alpha \circ \operatorname{ad}(X) \circ \alpha^{-1}$, for any $X \in \mathfrak{g}$.

iii) For each $Z \in \mathfrak{g}$, $\operatorname{ad}(Z)$ is skew-symmetric with respect to B:

$$B(\mathrm{ad}(Z)X,Y) = -B(X,\mathrm{ad}(Z)X), \forall X,Y \in \mathfrak{g}.$$

Exercise 2

Let (M, g) be a Riemannian manifold of constant sectional curvature κ and let $\gamma : [0, \ell] \to M$ be a geodesic parametrized by arc-length. Let J be a vector field along γ , normal to γ' .

- i) Show that the Jacobi equation can be written as $J'' + \kappa J = 0$.
- ii) Let V be a parallel unit vector field along γ normal to γ' . Determine the Jacobi vector field J satisfying the initial conditions J(0) = 0 and J'(0) = V(0).

Exercise 3

- i) Let (M,g) be a Riemannian manifold and $\gamma : I \to M$ a geodesic. Show that if M is 2-dimensional, then the relation for points of γ to be conjugated to each other along γ is transitive. More precisely, for any $t_i \in I$, i = 1, 2, 3, such that $\gamma(t_1)$ is conjugated to $\gamma(t_2)$ and $\gamma(t_2)$ is conjugated to $\gamma(t_3)$, it follows that $\gamma(t_1)$ is conjugated to $\gamma(t_3)$.
- ii) Show that the statement in i) is not true for higher dimensions, by considering for instance the Riemannian manifold $(S^2 \times S^2, g_{std} \oplus g_{std})$, that is the Riemannian product of two spheres with the standard metric and the following geodesic $\gamma(t) = (\cos(t), 0, \sin(t), \cos(\pi t), 0, \sin(\pi t)) \in S^2 \times S^2 \subset \mathbb{R}^3 \times \mathbb{R}^3 = \mathbb{R}^6$.

Hand in the solutions on Monday, June 3, 2013 before the lecture.

Differential Geometry II Exercise Sheet no. 8

Exercise 1

Let G be a Lie group which acts isometrically, freely and properly on a Riemannian manifold (M, g). (An action is *isometric* if l_{σ} is an isometry for any $\sigma \in G$.) Show that there exists a metric on the quotient manifold $G \setminus M$ such that the projection $\pi : M \to G \setminus M$ is a Riemannian submersion. (A submersion $\pi : M \to N$ between Riemannian manifolds is called a *Riemannian* submersion if $d_x \pi$ is an isometry from the orthogonal complement of ker $d_x \pi$ in $T_x M$ to $T_{\pi(x)} N$ for any $x \in M$.)

Exercise 2

Let $\pi: (M, g) \to (N, h)$ be a Riemannian submersion.

- i) Let γ be a geodesic in (N, h). Show that any horizontal lift of γ is a geodesic in (M, g).
- ii) Let τ : [a, b] → M be a geodesic in (M, g) such that τ(a) is horizontal. Show that τ(t) is horizontal for all t ∈ [a, b]. Conclude that if a horizontal lift γ of a curve γ is a geodesic in (M, g), then γ is a geodesic in (N, h).
- iii) Let $\pi : S^{2n+1} \to \mathbb{C}P^n$ be the projection $z \mapsto [z]$, which defines the so-called *Hopf fibration*. Consider on $\mathbb{C}P^n$ the Riemannian metric that makes π a Riemannian submersion, where S^{2n+1} carries the standard metric. This means $\mathbb{C}P^n$ carries the metric defined vai Exercise 1. This metric on $\mathbb{C}P^n$ is called the *Fubini-Study* metric of $\mathbb{C}P^n$.

Show that the geodesics parametrized by arclength in $\mathbb{C}P^n$ are of the form $\gamma(t) = [\cos t \, v + \sin t \, w]$, where $v, w \in S^{2n+1} \subset \mathbb{C}^{n+1}$ with $\sum_{j=1}^{n+1} v_j \overline{w}_j = 0$. Show furthermore that in $\mathbb{C}P^1$ the points [(1,0)] and [(0,1)] are con-

jugated along a geodesic.

Exercise 3

i) Let V and W be two m-dimensional real vector spaces and A_t a smooth family of homomorphisms, where t is a real parameter. Let $A'_t = \frac{d}{dt}A_t$. Assume that

 $\operatorname{Im}(A_0) \oplus A'_0(\operatorname{Ker}(A_0)) = W.$

Show that there exists an $\varepsilon > 0$, such that A_t has rank m for all $t \in (-\varepsilon, 0) \cup (0, \varepsilon)$.

ii) Let J_1 and J_2 be two Jacobi vector fields along a geodesic on a Riemannian manifold. Show that the function

$$t \mapsto \langle J_1(t), J'_2(t) \rangle - \langle J'_1(t), J_2(t) \rangle$$

is constant.

iii) Let $\gamma : [0, b) \to M$ be a geodesic on a Riemannian manifold. Show that the set

 $\{t \in [0, b) \mid t \text{ is conjugated to } 0\}$

is closed and discrete in [0, b). Hint: Use i) and ii).

Exercise 4

Let $\pi : (M, g) \to (N, h)$ be a Riemannian submersion. The vectors in the kernel of $d\pi$ are called vertical. For each $X \in \Gamma(TN)$, let \overline{X} denote the horizontal lift of X, *i.e.* $\overline{X} \in \Gamma(TM)$ such that $d\pi \circ \overline{X} = X \circ \pi$ and \overline{X} is orthogonal in each point to the kernel of $d\pi$.

- i) Show that the vertical part of $[\overline{X}, \overline{Y}]$ in $p \in M$, denoted by $[\overline{X}, \overline{Y}]_p^v$, depends only on $\overline{X}(p)$ and $\overline{Y}(p)$.
- ii) Let $X \in \Gamma(TN)$, $\eta \in \Gamma(TM)$ and η is vertical. Show that $[\eta, \overline{X}]$ is vertical.
- iii) Compute $\overline{[X,Y]} [\overline{X},\overline{Y}]$ and $\nabla^M_{\overline{X}}\overline{Y} \overline{\nabla^N_X Y}$, for $X,Y \in \Gamma(TN)$.
- iv) Assume that $\overline{X}(p)$ and $\overline{Y}(p)$ are orthonormal. Let E be the plane spanned by $X(\pi(p))$ and $Y(\pi(p))$ and \overline{E} be the plane spanned by $\overline{X}(p)$ and $\overline{Y}(p)$. Show the following formula for the sectional curvatures of (M, g) and (N, h):

$$K^{N,h}(E) = K^{M,g}(\overline{E}) + \frac{3}{4} \| [\overline{X}, \overline{Y}]_p^v \|^2.$$

Hand in the solutions on Monday, June 10, 2013 before the lecture.

SoSe 2013 10.06.2013

Differential Geometry II Exercise Sheet no. 9

Exercise 1

Let (M, g) be a connected, complete and simply-connected Riemannian manifold with sectional curvature $K \leq 0$. Show that there is a unique geodesic between any two points on M. Hint: use Cartan-Hadamard Theorem.

Exercise 2

Let M be a connected manifold and $p \in M$. We consider the map defined in the lecture between the fundamental group of M and the set of free homotopy classes of loops:

$$F: \pi_1(M, p) \to \pi_o \mathcal{L}(M),$$
$$[\gamma] \mapsto [\gamma]_{\text{free}}.$$

Show the following:

- i) F is surjective.
- ii) F induces a well-defined map on the set of conjugacy classes in $\pi_1(M, p)$, that is $[\gamma \tau \gamma^{-1}]_{\text{free}} = [\tau]_{\text{free}}$, for any $\gamma, \tau \in \pi_1(M, p)$.
- iii) The map induced by F on the set of conjugacy classes in $\pi_1(M, p)$ is injective.

Exercise 3

We consider the Hopf fibration and the Fubini-Study metric on $\mathbb{C}P^n$ introduced in Exercise 2, (iii) on Sheet no. 8. We use the same notation as in this exercise, and again X^v is the vertical part of X. The vertical vectors of the Hopf fibration in the point $z \in S^{2n+1}$ are of the form $\lambda iz, \lambda \in \mathbb{R}$.

For $X, Y \in \mathbb{C}^{n+1}$, we define $\langle X, Y \rangle_{\mathbb{C}} := \sum_{j=1}^{n+1} X_j \overline{Y}_j$ and $\langle X, Y \rangle_{\mathbb{R}} := \operatorname{Re}(\sum_{j=1}^{n+1} X_j \overline{Y}_j)$. Then it holds $\langle X, Y \rangle_{\mathbb{C}} = \langle X, Y \rangle_{\mathbb{R}} + i \langle X, iY \rangle_{\mathbb{R}}$. Show the following:

- i) For any $\widetilde{X}_0 \in \mathbb{C}^{n+1}$, the map $w \mapsto \widetilde{X}_w := \widetilde{X}_0 \langle \widetilde{X}_0, w \rangle_{\mathbb{C}} w$ is a well-defined vector field on S^{2n+1} .
- ii) \tilde{X} is horizontal everywhere.
- iii) Each point $p \in \mathbb{C}P^n$ admits an open neighborhood U and a smooth map $f : \pi^{-1}(U) \to S^1$, such that $f(\lambda z) = \lambda f(z)$, for all $z \in \pi^{-1}(U)$ and $\lambda \in S^1$.
- iv) $f\widetilde{X}$ is a horizontal lift of a vector field $X \in \Gamma(TU)$.

v) For a fixed $z \in S^{2n+1}$ assume that $\langle \widetilde{X}_0, z \rangle_{\mathbb{C}} = \langle \widetilde{Y}_0, z \rangle_{\mathbb{C}} = 0$. For the Levi-Civita connection ∇ of S^{2n+1} it holds:

$$\nabla_{\widetilde{Y}_w}\widetilde{X}_w|_{w=z} = -(\operatorname{Im}(\langle \widetilde{X}_0, \widetilde{Y}_0 \rangle_{\mathbb{C}}))iz$$

- vi) Choose f such that $f(z_0) = 1$ for a $z_0 \in \pi^{-1}(p)$. Conclude that $[f\widetilde{Y}, f\widetilde{X}]^v|_{z_0} = -2(\operatorname{Im}\langle \widetilde{X}_0, \widetilde{Y}_0 \rangle_{\mathbb{C}})iz_0.$
- vii) The sectional curvature K of $\mathbb{C}P^n$ satisfies: $1 \leq K \leq 4$. For which planes is K = 4 and for which planes is K = 1?

Hand in the solutions on Monday, June 17, 2013 before the lecture.

SoSe 2013 17.06.2013

Differential Geometry II Exercise Sheet no. 10

Exercise 1

Determine $\mathcal{C}_p^{\mathrm{tan}}M$, and \mathcal{C}_pM for

- (a) $M = \mathbb{R}^2 / \Gamma$, where Γ is the subgroup of \mathbb{R}^2 generated by $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$, and p := [0].
- (b) $M = \mathbb{R}P^m = S^m / \{\pm 1\}$ with the quotient metric, and $p := [e_1]$.

Exercise 2

Let $M = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = e^{-z^2}\}$. Show that M is a smooth surface, and that M is complete, $vol(M) < \infty$, injrad(M) = 0, $diam(M) = \infty$.

Exercise 3

Let M be a complete connected Riemannian manifold, $p \in M$ fixed. We define diam $M := \sup\{d(x, y) \mid x, y \in M\}$. Show

- (a) diam $M = \sup_{X \in SM} s(X)$
- (b) $\operatorname{injrad}(p) = \min_{X \in S_p M} s(X)$
- (c) $\operatorname{injrad}(M) = \inf_{X \in SM} s(X)$
- (d) $\sup_{X \in SM} s(X) = \infty$ if and only if there is for all $p \in M$ an $X \in S_pM$ with $s(X) = \infty$. Hint: Use Exercise no. 3 on Sheet no. 9 of Differential Geometry I
- (e) Give an example of a complete Riemannian manifold such that $\sup_{X \in S_pM} s(X)$ depends on p.

Exercise 4

We consider $S^3 \subset \mathbb{C}^2$ endowed with the standard metric, and $\Gamma := \{1, i, -1, -i\}$ which acts freely und isometrically on S^3 . Let $M := S^3/\Gamma$, $\pi : S^3 \to M$ the corresponding projection and $p := \pi(e_1) = e_1 \mod \Gamma \in M$. Show that for the cut locus \mathcal{C}_p the following holds:

$$\mathcal{C}_p = \{ \pi(x) \mid x \in S^3 \text{ with } d(x, e_1) = d(x, ie_1) \}$$
$$= \left\{ \pi \left(\frac{(1+i)r}{\sqrt{2}} e_1 + v e_2 \right) \mid r \in [0, 1], \quad v \in \mathbb{C} \text{ with } r^2 + |v|^2 = 1 \right\}.$$

Answer without justification: Where are the minima and maxima of the function $s: S_p M \to (0, \infty)$?

Bonus question: Where is C_p a smooth hypersurface and where not?

Hand in the solutions on Monday, June 24, 2013 before the lecture.

Differential Geometry II Exercise Sheet no. 11

Exercise 1

Let M be a complete Riemannian manifold; let N be a submanifold and a closed subset of M. For any $p_0 \in M$ we define its distance to N as $d(p_0, N) := \inf_{q \in N} d(p_0, q)$. Show the following:

- i) There exists a point $q_0 \in N$, such that $d(p_0, N) = d(p_0, q_0)$.
- ii) If p₀ ∈ M \ N, then a minimizing geodesic joining p₀ and q₀ is orthogonal to N at q₀. *Hint: Use a variation of the geodesic with curves starting at p₀ and ending at points in N.*

Exercise 2

Let N be a submanifold of a Riemannian manifold (M, g). The normal exponential map of N, $\exp^{\perp} : TN^{\perp} \to M$ is defined as the restriction of the exponential map $\exp : TM \to M$, $(p, v) \mapsto \exp_p v$ to points $q \in N$ and vectors $w \in (T_qN)^{\perp}$. Show that $p \in M$ is a focal point of $N \subset M$ if and only if p is a critical value of \exp^{\perp} .

Hint: For " \Rightarrow " consider for a suitable variation $\gamma : (-\varepsilon, \varepsilon) \times [0, \ell] \to M$ with $\alpha(s) := \gamma(s, 0) \subset N$ and $V(s) := \frac{\nabla}{dt} \gamma|_{(s,0)}$ the curve $c(s) := (\alpha(s), \ell V(s))$. For " \Leftarrow " consider for a suitable curve $c(s) = (\alpha(s), \ell V(s))$ in TN^{\perp} the variation $\gamma(s, t) = \exp_{\alpha(s)}(tV(s))$.

Exercise 3

Let N be a submanifold of a flat manifold (M, g) and γ be a geodesic in M with $\gamma(0) \in N$ and $\dot{\gamma}(0) \perp T_{\gamma(0)}N$. Show that $\gamma(\frac{1}{\lambda})$ is a focal point of N if and only if λ is a non-zero eigenvalue of $S_{\dot{\gamma}(0)}$.

Hint: For " \Rightarrow " consider $X(t) := (1 - \lambda t)E(t)$, where E is a parallel vector field along γ and $S_{\dot{\gamma}(0)}(E(0)) = \lambda E(0)$.

Hand in the solutions on Monday, July 1, 2013 before the lecture.

Differential Geometry II Exercise Sheet no. 12

Exercise 1

Let (M, g) be a Riemannian manifold, whose sectional curvature K satisfies the inequalities:

$$0 < L \le K \le H,$$

for some positive constants L and H. For a geodesic $\gamma : [0, \ell] \to M$, parametrized by arclength, we define

$$d := \min\{t > 0 \,|\, \gamma(t) \text{ is conjugated to } \gamma(0) \text{ along } \gamma|_{[0,t]}\}.$$

Show

$$\frac{\pi}{\sqrt{H}} \leq d \leq \frac{\pi}{\sqrt{L}}.$$

Hint: Use the First Rauch Comparison Theorem.

Exercise 2

Let (M, g) be a complete Riemannian manifold with sectional curvature $K \ge 0$. Let Γ be a discrete group without 2-torsion (*i.e.* $\gamma^2 \ne e$, for any $\gamma \in \Gamma \setminus \{e\}$, where e is the identity element of Γ), acting isometrically, freely and properly on M. For a point $p \in M$, let $\gamma_0 \in \Gamma$ be an element with $d(p, \gamma_0 p) = \min_{\gamma \in \Gamma \setminus \{e\}} d(p, \gamma p)$.

We choose a minimal geodesics c_1 which connects p to $\gamma_0 p$, and a geodesic c_2 which connects p to $\gamma_0^{-1} p$. Show that c_1 and c_2 form at p an angle $\alpha \geq \frac{\pi}{3}$.

Exercise 3

Let (M,g) be a complete Riemannian manifold with sectional curvature $K \ge 0$ and let $\gamma, \sigma : [0, \infty) \to M$ be two geodesics, parametrized by arclength, with $\gamma(0) = \sigma(0)$. We assume that γ is a ray and that $\alpha := \sphericalangle(\dot{\gamma}(0), \dot{\sigma}(0)) < \frac{\pi}{2}$.

Show that $\lim_{t\to\infty} d(\sigma(0), \sigma(t)) = \infty$.

Hint: Using the triangle inequality, show first that it is enough to prove: $\lim_{s \to \infty} (d(\gamma(s), \sigma(t)) - d(\gamma(s), \gamma(0))) \ge t \cos \alpha, \text{ for any fixed } t \ge 0. \text{ Then apply}$ Toponogov's Theorem (A).

Hand in the solutions on Monday, July 15, 2013 before the lecture.

SoSe 2013 01.07.2013