Prof. Dr. Bernd Ammann

Differential Geometry I

Exercise Sheet no. 15

Exercise 1

Right or wrong? Justify shortly each of your answers. In the whole exercise, V and W denote smooth \mathbb{K}-vector bundles over a smooth manifold M, where $\mathbb{K}=\mathbb{R}$ or \mathbb{C}.
(a) If V and W are trivial, then so are $V \oplus W, V \otimes W, \operatorname{Hom}(V, W)$ and $\Lambda^{2} V$.
(b) For any $n \geq 3$, there exists an n-dimensional compact smooth manifold whose tangent bundle is trivial.
(c) Each complex vector bundle with connection over a 1-dimensional manifold is flat.
(d) Each real vector bundle over S^{1} is trivial.
(e) If V and $V \oplus W$ are trivial, then so is W.
(f) Every complex line bundle with connection which admits a nowherevanishing parallel section is flat.
(g) Every real line bundle with connection is flat.
(h) There exists on every manifold a vector bundle with flat connection.
(i) The tangent bundle of every Riemannian manifold admits a unique metric connection.
(j) If a surface $M \subset \mathbb{R}^{3}$ contains a line (i.e., if there exists $p, v \in \mathbb{R}^{3}, v \neq 0$, with $p+\mathbb{R} \cdot v \subset M)$, then $K \leq 0$ along that line.

Exercise 2

Let $M:=S^{2} \times \mathbb{R} \subset \mathbb{R}^{3} \times \mathbb{R}=\mathbb{R}^{4}$. Compute (after choosing a smooth unit normal field) the Weingarten map, the mean curvature, the Ricci-tensor and the scalar curvature of M.

Exercise 3

Let M and M^{\prime} be compact surfaces.
(a) Assume M and M^{\prime} to carry metrics with negative sectional (or Gauß) curvature. Does the connected sum $M \sharp M^{\prime}$ carry such a metric? Justify your answer.
(b) Same question if M and M^{\prime} carry a metric with positive sectional curvature.

Exercise 4

Let $V \rightarrow M$ be a real or complex vector bundle over an arbitrary smooth manifold. Show that there is a scalar product on V.
Hint: Construct at first a scalar product on trivial vector bundles. Then use local trivializations and a partition of unity (Lemma IV.6.2) to prove the general case.

Exercise 5

Given $n \in \mathbb{N}, n \geq 2$, let $\pi_{N}: S^{n} \backslash\left\{e_{n+1}\right\} \rightarrow \mathbb{R}^{n}, x \mapsto \frac{1}{1-x_{n+1}}\left(x_{1}, \ldots, x_{n}\right)$ and $\pi_{S}: S^{n} \backslash\left\{-e_{n+1}\right\} \rightarrow \mathbb{R}^{n}, x \mapsto \frac{1}{1+x_{n+1}}\left(x_{1}, \ldots, x_{n}\right)$, denote the stereographic projections from the North and South pole respectively. Recall the definition $f_{*} X=d f \circ X \circ f^{-1}$ for a diffeomorphism $f: M \rightarrow N$ and a vector field X on M.
(a) Given $v \in \mathbb{R}^{n} \backslash\{0\}$, define the vector field X on $S^{n} \backslash\left\{e_{n+1}\right\}$ by $X:=\pi_{N}^{*} v$, that is, $X_{\left.\right|_{p}}:=\left(d_{p} \pi\right)^{-1}(v)$ for all $p \in S^{n} \backslash\left\{e_{n+1}\right\}$. Show that $\left(\left(\pi_{S}\right)_{*} X\right)_{\left.\right|_{x}}=$ $|x|^{2} \cdot\left(v-2\left\langle v, \frac{x}{|x|} \frac{x}{|x|}\right)\right.$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$.
(b) Deduce that X can be extended uniquely as a smooth vector field \widetilde{X} on S^{n}, and determine its zero points.
(c) From now on let $n=2$. Apply the Poincaré-Hopf theorem to compute the index of \widetilde{X} in e_{n+1}.
(d) In the case $n=2$ check the result of (c) by a direct computation using part (a).

Abgabe der Lösungen: Montag, den 11.2.2013 bei Nicolas Ginoux (M122).

