Differential Geometry I Exercise Sheet no. 15

Exercise 1

Right or wrong? Justify shortly each of your answers. In the whole exercise, V and W denote smooth K-vector bundles over a smooth manifold M, where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

- (a) If V and W are trivial, then so are $V \oplus W$, $V \otimes W$, Hom(V, W) and $\Lambda^2 V$.
- (b) For any $n \ge 3$, there exists an *n*-dimensional compact smooth manifold whose tangent bundle is trivial.
- (c) Each complex vector bundle with connection over a 1-dimensional manifold is flat.
- (d) Each real vector bundle over S^1 is trivial.
- (e) If V and $V \oplus W$ are trivial, then so is W.
- (f) Every complex line bundle with connection which admits a nowherevanishing parallel section is flat.
- (g) Every real line bundle with connection is flat.
- (h) There exists on every manifold a vector bundle with flat connection.
- (i) The tangent bundle of every Riemannian manifold admits a unique metric connection.
- (j) If a surface $M \subset \mathbb{R}^3$ contains a line (i.e., if there exists $p, v \in \mathbb{R}^3$, $v \neq 0$, with $p + \mathbb{R} \cdot v \subset M$), then $K \leq 0$ along that line.

Exercise 2

Let $M := S^2 \times \mathbb{R} \subset \mathbb{R}^3 \times \mathbb{R} = \mathbb{R}^4$. Compute (after choosing a smooth unit normal field) the Weingarten map, the mean curvature, the Ricci-tensor and the scalar curvature of M.

Exercise 3

Let M and M' be compact surfaces.

- (a) Assume M and M' to carry metrics with negative sectional (or Gauß) curvature. Does the connected sum $M \sharp M'$ carry such a metric? Justify your answer.
- (b) Same question if M and M' carry a metric with positive sectional curvature.

Exercise 4

Let $V \to M$ be a real or complex vector bundle over an arbitrary smooth manifold. Show that there is a scalar product on V.

Hint: Construct at first a scalar product on trivial vector bundles. Then use local trivializations and a partition of unity (Lemma IV.6.2) to prove the general case.

Exercise 5

Given $n \in \mathbb{N}$, $n \geq 2$, let $\pi_N : S^n \smallsetminus \{e_{n+1}\} \to \mathbb{R}^n$, $x \mapsto \frac{1}{1-x_{n+1}}(x_1, \ldots, x_n)$ and $\pi_S : S^n \smallsetminus \{-e_{n+1}\} \to \mathbb{R}^n$, $x \mapsto \frac{1}{1+x_{n+1}}(x_1, \ldots, x_n)$, denote the stereographic projections from the North and South pole respectively. Recall the definition $f_*X = df \circ X \circ f^{-1}$ for a diffeomorphism $f : M \to N$ and a vector field Xon M.

- (a) Given $v \in \mathbb{R}^n \setminus \{0\}$, define the vector field X on $S^n \setminus \{e_{n+1}\}$ by $X := \pi_N^* v$, that is, $X_{|_p} := (d_p \pi)^{-1}(v)$ for all $p \in S^n \setminus \{e_{n+1}\}$. Show that $((\pi_S)_* X)_{|_x} = |x|^2 \cdot \left(v - 2\langle v, \frac{x}{|x|} \rangle \frac{x}{|x|}\right)$ for all $x \in \mathbb{R}^n \setminus \{0\}$.
- (b) Deduce that X can be extended uniquely as a smooth vector field \tilde{X} on S^n , and determine its zero points.
- (c) From now on let n = 2. Apply the Poincaré-Hopf theorem to compute the index of \widetilde{X} in e_{n+1} .
- (d) In the case n = 2 check the result of (c) by a direct computation using part (a).

Abgabe der Lösungen: Montag, den 11.2.2013 bei Nicolas Ginoux (M122).