Universität Regensburg, Mathematik Prof. Dr. Bernd Ammann Dr. Nicolas Ginoux WS 2012/13 28.01.2013

Differential Geometry I Exercise Sheet no. 14

Exercise 1

Let (M^n, g) be a connected Riemannian manifold and $f : M \to M$ be an isometry. Show that, if at a point $p \in M$, one has f(p) = p and $d_p f = \mathrm{Id}_{T_pM}$, then $f = \mathrm{Id}_M$.

Exercise 2

We denote as usual by $\mathbb{R}P^n$ the *n*-dimensional real projective space.

- (a) Given any $p \in S^n$, we define $\omega \in \Gamma(\Lambda^n T_p^* S^n)$ as $\omega_p(V_1, V_2, \ldots, V_n) = \det(p, V_1, \ldots, V_n)$. Show that ω defines a trivialization of $\Lambda^n T_p^* S^n$ and an orientation of S^n .
- (b) Show $(-\mathrm{Id}_{S^n})^*\omega = (-1)^{n+1}\omega$. In other words, show that

$$\omega_{-p}(d(-\mathrm{Id}_{S^n})(V_1), d(-\mathrm{Id}_{S^n})(V_2), \dots, d(-\mathrm{Id}_{S^n})(V_n)) = (-1)^{n+1}\omega_p(V_1, V_2, \dots, V_n)$$

for all $p \in S^n$ and all $V_1, \ldots, V_n \in T_p S^n$.

(c) Deduce that $\mathbb{R}P^n$ is orientable iff n is odd. (*Hint: The proof that it is non-orientable for n even can be carried out similarly to Exercise 2 of Sheet no. 10.*)

Exercise 3

Let M be a compact (orientable) surface in \mathbb{R}^3 . Let $\overline{B}_r(0)$ be the closed ball of radius r around 0 in \mathbb{R}^3 , and let $S_r(0) = \partial \overline{B}_r(0)$ be its boundary.

- (a) Show that the infimum $R := \inf\{r > 0 \mid M \subset \overline{B}_r(0)\} > 0$ is attained, and conclude that $M \cap S_R(0)$ is not empty.
- (b) Show that $T_x M$ is the orthogonal complement of x for any $x \in M \cap S_R(0)$. Show for any such x, that the two principal curvatures in x have the same sign (for a given choice of a unit normal field).
- (c) Deduce that the Gauss curvature of M is positive in any $x \in M \cap S_R(0)$.
- (d) Are there compact minimal surfaces M in \mathbb{R}^3 ? Justify your answer. (We want to recall the fact that a surface is called minimal if the mean curvature H vanishes on all of M.)

Exercise 4

Let $M \subset \mathbb{R}^3$ be a compact and connected surface. We accept without proof that $\mathbb{R}^3 \smallsetminus M$ has two connected components, one bounded and one unbounded.

- (a) Show the existence of a smooth map $N: M \to S^2$ with $N(p) \perp T_p M$ for all $p \in M$.
- (b) Deduce that M is orientable.
- (c) Show that N is surjective.
 (Hint: show that any 2-dimensional vector subspace of ℝ³ is the tangent space of M at two or more points of M.)
 Comment: Such a map N is called "the" Gauß map of the surface. It is unique up to a sign.

Abgabe der Lösungen: Montag, den 4.2.2013 vor der Vorlesung.