WS 2012/13 21.01.2013

Differential Geometry I Exercise Sheet no. 13

Exercise 1

Let (M^n, g) be a connected *n*-dimensional Riemannian manifold. Assume $n \geq 3$ and that, for each $p \in M$ and any two planes $E, E' \subset T_pM$, we have K(E) = K(E'), where K(E) denotes the sectional curvature of the plane E.

(a) Show the existence of a smooth function $\kappa : M \to \mathbb{R}$ such that, for all $X, Y, Z, T \in \mathfrak{X}(M)$,

$$\langle R(X,Y)Z,T\rangle = \kappa \cdot \Big(g(Y,Z)(gX,T) - g(X,Z)g(Y,T)\Big)$$

holds on M.

(b) Deduce that ric = $(n-1)\kappa g$ and that (M^n, g) has constant sectional curvature, i.e. that κ is constant.

Exercise 2 (Möbius strip)

Let $F:\mathbb{R}\times \left] -1,1\right[\rightarrow \mathbb{R}^{3}$ be the map defined by

$$F(x,y) := \begin{pmatrix} (1+\frac{y}{2}\cos(\frac{x}{2}))\cos(x)\\ (1+\frac{y}{2}\cos(\frac{x}{2}))\sin(x)\\ \frac{y}{2}\sin(\frac{x}{2}) \end{pmatrix}$$

and let $M := F(\mathbb{R} \times [-1, 1[) \subset \mathbb{R}^3$.

- (a) Show that M is a smooth 2-dimensional submanifold of \mathbb{R}^3 .
- (b) Show that, for every $(x, y) \in \mathbb{R} \times]-1, 1[$, the vector $\frac{\frac{\partial F}{\partial x}(x, y) \times \frac{\partial F}{\partial y}(x, y)}{\|\frac{\partial F}{\partial x}(x, y) \times \frac{\partial F}{\partial y}(x, y)\|} \in \mathbb{R}^3$ has unit norm and is orthogonal to $T_{F(x,y)}M$. Here " \times " denotes the cross product for vectors in \mathbb{R}^3 .
- (c) Show that no continuous unit normal field exists on M and deduce that M is not orientable.

Exercise 3

Let $C := \{x = (x_0, x_1, x_2, x_3, x_4) \in \mathbb{R}^5 \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 = \cosh(x_0)^2\}$. Compute the second fundamental form (in \mathbb{R}^5), the Ricci-tensor and the scalar curvature of (M, g), where g is the Riemannian metric induced by the standard Euclidean inner product.

Hint: Show that the second fundamental form has pointwise two eigenvalues, κ with multiplicity 1 and $-\kappa$ with multiplicity 3.

Exercise 4

Let $M \subset \widehat{M}$ be a submanifold of the Riemannian manifold \widehat{M} . It is called totally geodesic iff $\mathbb{I} \equiv 0$.

- (a) Show that M is a totally geodesic iff every geodesic of M is also a geodesic of \hat{M} .
- (b) Assume additionally that M is complete. Show that M is totally geodesic iff every geodesic $\gamma: I \to \hat{M}, 0 \in I$, of \hat{M} with $\dot{\gamma}(0) \in TM$ is contained in M.

Abgabe der Lösungen: Montag, den 28.1.2013 vor der Vorlesung.