Prof. Dr. Bernd Ammann
Dr. Nicolas Ginoux

Differential Geometry I
 Exercise Sheet no. 13

Exercise 1

Let $\left(M^{n}, g\right)$ be a connected n-dimensional Riemannian manifold. Assume $n \geq 3$ and that, for each $p \in M$ and any two planes $E, E^{\prime} \subset T_{p} M$, we have $K(E)=K\left(E^{\prime}\right)$, where $K(E)$ denotes the sectional curvature of the plane E.
(a) Show the existence of a smooth function $\kappa: M \rightarrow \mathbb{R}$ such that, for all $X, Y, Z, T \in \mathfrak{X}(M)$,

$$
\langle R(X, Y) Z, T\rangle=\kappa \cdot(g(Y, Z)(g X, T)-g(X, Z) g(Y, T))
$$

holds on M.
(b) Deduce that ric $=(n-1) \kappa g$ and that $\left(M^{n}, g\right)$ has constant sectional curvature, i.e. that κ is constant.

Exercise 2 (Möbius strip)
Let $F: \mathbb{R} \times]-1,1\left[\rightarrow \mathbb{R}^{3}\right.$ be the map defined by

$$
F(x, y):=\left(\begin{array}{c}
\left(1+\frac{y}{2} \cos \left(\frac{x}{2}\right)\right) \cos (x) \\
\left(1+\frac{y}{2} \cos \left(\frac{x}{2}\right)\right) \sin (x) \\
\frac{y}{2} \sin \left(\frac{x}{2}\right)
\end{array}\right)
$$

and let $M:=F(\mathbb{R} \times]-1,1[) \subset \mathbb{R}^{3}$.
(a) Show that M is a smooth 2 -dimensional submanifold of \mathbb{R}^{3}.
(b) Show that, for every $(x, y) \in \mathbb{R} \times]-1,1\left[\right.$, the vector $\frac{\frac{\partial F}{\partial x}(x, y) \times \frac{\partial F}{\partial y}(x, y)}{\left\|\frac{\partial F}{\partial x}(x, y) \times \frac{\partial F}{\partial y}(x, y)\right\|} \in \mathbb{R}^{3}$ has unit norm and is orthogonal to $T_{F(x, y)} M$. Here " \times " denotes the cross product for vectors in \mathbb{R}^{3}.
(c) Show that no continuous unit normal field exists on M and deduce that M is not orientable.

Exercise 3

Let $C:=\left\{x=\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{5} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=\cosh \left(x_{0}\right)^{2}\right\}$. Compute the second fundamental form (in \mathbb{R}^{5}), the Ricci-tensor and the scalar curvature of (M, g), where g is the Riemannian metric induced by the standard Euclidean inner product.
Hint: Show that the second fundamental form has pointwise two eigenvalues, κ with multiplicity 1 and $-\kappa$ with multiplicity 3 .

Exercise 4

Let $M \subset \widehat{M}$ be a submanifold of the Riemannian manifold \widehat{M}. It is called totally geodesic iff II $\equiv 0$.
(a) Show that M is a totally geodesic iff every geodesic of M is also a geodesic of \hat{M}.
(b) Assume additionally that M is complete. Show that M is totally geodesic iff every geodesic $\gamma: I \rightarrow \hat{M}, 0 \in I$, of \hat{M} with $\dot{\gamma}(0) \in T M$ is contained in M.

Abgabe der Lösungen: Montag, den 28.1.2013 vor der Vorlesung.

