Differential Geometry I Exercise Sheet no. 12

Exercise 1 Let (M^n, g) be a Riemannian manifold and (U_{φ}, φ) be a chart on M.

(a) Show that the components $R_{ijk}^l := d\varphi^l \left(R(\frac{\partial}{\partial \varphi^i}, \frac{\partial}{\partial \varphi^j}) \frac{\partial}{\partial \varphi^k} \right)$ of the curvature tensor R of g on U_{φ} are given in terms of the Christoffel symbols associated to (U_{φ}, φ) by

$$R_{ijk}^{l} = \frac{\partial \Gamma_{kj}^{l}}{\partial \varphi^{i}} - \frac{\partial \Gamma_{ki}^{l}}{\partial \varphi^{j}} + \sum_{m=1}^{n} \left(\Gamma_{mi}^{l} \Gamma_{kj}^{m} - \Gamma_{mj}^{l} \Gamma_{ki}^{m} \right).$$

(b) Deduce that, if $\operatorname{ric} = \sum_{i,j=1}^{n} \operatorname{ric}_{ij} d\varphi^{i} \otimes d\varphi^{j}$ denotes the decomposition of the Ricci-tensor of g, then

$$\operatorname{ric}_{ij} = \sum_{k=1}^{n} R_{kij}^{k} = \sum_{k=1}^{n} \left(\frac{\partial \Gamma_{ji}^{k}}{\partial \varphi^{k}} - \frac{\partial \Gamma_{jk}^{k}}{\partial \varphi^{i}} + \sum_{m=1}^{n} \left(\Gamma_{mk}^{k} \Gamma_{ji}^{m} - \Gamma_{mi}^{k} \Gamma_{jk}^{m} \right) \right).$$

Exercise 2

Let $(M := M_1 \times M_2, g := g_1 \oplus g_2)$ be the product of two Riemannian manifolds as in Exercise 3.(b) of Sheet no. 10.

(a) Show that the Levi-Civita connection ∇ of (M, g) is given by

$$\nabla_{(X_1,X_2)}(Y_1,Y_2) = \nabla_{X_1}^{M_1} Y_1 + \nabla_{X_2}^{M_2} Y_2 + \partial_{X_1} Y_2 + \partial_{X_2} Y_1,$$

for all $X_1, Y_1 \in \Gamma(\pi_1^*TM_1), X_2, Y_2 \in \Gamma(\pi_2^*TM_2)$ and where $\partial_{X_1}Y_2$ (resp. $\partial_{X_2}Y_1$) denotes the usual derivative (make sense of this).

(b) Deduce that the curvature tensor R of (M, g) is given by

$$R_{X,Y}^M Z = R_{X_1,Y_1}^{M_1} Z_1 + R_{X_2,Y_2}^{M_2} Z_2,$$

for all $X_i, Y_i, Z_i \in T_{x_i}M_i$, i = 1, 2, where $X := X_1 + X_2$, $Y := Y_1 + Y_2$ and $Z := Z_1 + Z_2$. (Here we write $R_{X,Y}$ instead of R(X,Y) as this is better for typesetting in this context.)

(c) Calculate the Ricci tensor and the scalar curvature of M in terms of the Ricci tensor and the scalar curvature of M_1 and M_2 .

Exercise 3

Let $E, F \to M$ be (real or complex) vector bundles with connections ∇^E, ∇^F over a given manifold M and $x \in M$ be a point. Prove the following identities:

(a) The curvature tensor of the connection $\nabla^E \oplus \nabla^F$ on $E \oplus F \to M$ is given by

$$R_{X,Y}^{E\oplus F} = R_{X,Y}^E \oplus R_{X,Y}^F,$$

for all $X, Y \in T_x M$.

(b) The curvature tensor of the tensor connection on $E \otimes F \to M$ as defined in Exercise 3 of Sheet no. 11 is given by

$$R_{X,Y}^{E\otimes F} = R_{X,Y}^E \otimes \mathrm{Id}_F + \mathrm{Id}_E \otimes R_{X,Y}^F,$$

for all $X, Y \in T_x M$.

(c) The curvature tensor of the dual bundle $E^* \to M$ endowed with the induced connection is given by

$$(R_{X,Y}^{E^*}\alpha)(V) = -\alpha(R_{X,Y}^EV)$$

for all $X, Y \in T_x M$, for all $V \in E_x$ and $\alpha \in E_x^*$.

Exercise 4

Let (M^n, g) be a Riemannian manifold and denote by ∇ resp. R the Levi-Civita connection resp. the Riemannian curvature tensor of (M^n, g) . Let the (0, 4)-tensor \tilde{R} be defined by $\tilde{R}(X, Y, Z, W) := g(R(X, Y)Z, W)$, for all $X, Y, Z, W \in T_x M$ and $x \in M$.

(a) Let $x \in M$ be a point. Prove that the following identities are satisfied: for all $X, Y, Z, T, U \in T_pM$,

 $(\nabla_X \tilde{R})(Y, Z, T, U) = -(\nabla_X \tilde{R})(Z, Y, T, U) = -(\nabla_X \tilde{R})(Y, Z, U, T) = (\nabla_X \tilde{R})(T, U, Y, Z).$

(b) For a given tensor field $A \in \Gamma(T^*M \otimes T^*M)$ let the *divergence* of A be defined by

$$\operatorname{div}(A)(X) := \sum_{j=1}^{n} (\nabla_{E_j} A)(E_j, X) \qquad \forall X \in TM,$$

where $\{E_j\}_{1 \le j \le n}$ is a local orthonormal basis of TM, that is, $g(E_i, E_j) = \delta_i^j$. Prove using the second Bianchi identity:

$$\operatorname{div}(\operatorname{ric}) = \frac{1}{2}d\operatorname{scal}.$$

(Hint: for a given point $x \in M$, the basis $\{E_j\}_{1 \le j \le n}$ can be chosen such that $(\nabla E_i)|_x = 0$ holds; how can this be done?)

(c) Application: Assuming $n \geq 3$, the manifold M connected and the existence of a smooth function $f: M \to \mathbb{R}$ with $\operatorname{ric} = f \cdot g$ on M, prove that f is constant on M. Such a Riemannian manifold is then called *Einstein*.

Abgabe der Lösungen: Montag, den 21.1.2013 vor der Vorlesung.