Prof. Dr. Bernd Ammann

Differential Geometry I

Exercise Sheet no. 12

Exercise 1 Let $\left(M^{n}, g\right)$ be a Riemannian manifold and $\left(U_{\varphi}, \varphi\right)$ be a chart on M.
(a) Show that the components $R_{i j k}^{l}:=d \varphi^{l}\left(R\left(\frac{\partial}{\partial \varphi^{i}}, \frac{\partial}{\partial \varphi^{j}}\right) \frac{\partial}{\partial \varphi^{k}}\right)$ of the curvature tensor R of g on U_{φ} are given in terms of the Christoffel symbols associated to $\left(U_{\varphi}, \varphi\right)$ by

$$
R_{i j k}^{l}=\frac{\partial \Gamma_{k j}^{l}}{\partial \varphi^{i}}-\frac{\partial \Gamma_{k i}^{l}}{\partial \varphi^{j}}+\sum_{m=1}^{n}\left(\Gamma_{m i}^{l} \Gamma_{k j}^{m}-\Gamma_{m j}^{l} \Gamma_{k i}^{m}\right) .
$$

(b) Deduce that, if ric $=\sum_{i, j=1}^{n} \operatorname{ric}_{i j} d \varphi^{i} \otimes d \varphi^{j}$ denotes the decomposition of the Ricci-tensor of g, then

$$
\operatorname{ric}_{i j}=\sum_{k=1}^{n} R_{k i j}^{k}=\sum_{k=1}^{n}\left(\frac{\partial \Gamma_{j i}^{k}}{\partial \varphi^{k}}-\frac{\partial \Gamma_{j k}^{k}}{\partial \varphi^{i}}+\sum_{m=1}^{n}\left(\Gamma_{m k}^{k} \Gamma_{j i}^{m}-\Gamma_{m i}^{k} \Gamma_{j k}^{m}\right)\right) .
$$

Exercise 2

Let ($M:=M_{1} \times M_{2}, g:=g_{1} \oplus g_{2}$) be the product of two Riemannian manifolds as in Exercise 3.(b) of Sheet no. 10.
(a) Show that the Levi-Civita connection ∇ of (M, g) is given by

$$
\nabla_{\left(X_{1}, X_{2}\right)}\left(Y_{1}, Y_{2}\right)=\nabla_{X_{1}}^{M_{1}} Y_{1}+\nabla_{X_{2}}^{M_{2}} Y_{2}+\partial_{X_{1}} Y_{2}+\partial_{X_{2}} Y_{1},
$$

for all $X_{1}, Y_{1} \in \Gamma\left(\pi_{1}^{*} T M_{1}\right), X_{2}, Y_{2} \in \Gamma\left(\pi_{2}^{*} T M_{2}\right)$ and where $\partial_{X_{1}} Y_{2}$ (resp. $\partial_{X_{2}} Y_{1}$) denotes the usual derivative (make sense of this).
(b) Deduce that the curvature tensor R of (M, g) is given by

$$
R_{X, Y}^{M} Z=R_{X_{1}, Y_{1}}^{M_{1}} Z_{1}+R_{X_{2}, Y_{2}}^{M_{2}} Z_{2},
$$

for all $X_{i}, Y_{i}, Z_{i} \in T_{x_{i}} M_{i}, i=1,2$, where $X:=X_{1}+X_{2}, Y:=Y_{1}+Y_{2}$ and $Z:=Z_{1}+Z_{2}$. (Here we write $R_{X, Y}$ instead of $R(X, Y)$ as this is better for typesetting in this context.)
(c) Calculate the Ricci tensor and the scalar curvature of M in terms of the Ricci tensor and the scalar curvature of M_{1} and M_{2}.

Exercise 3

Let $E, F \rightarrow M$ be (real or complex) vector bundles with connections ∇^{E}, ∇^{F} over a given manifold M and $x \in M$ be a point. Prove the following identities:
(a) The curvature tensor of the connection $\nabla^{E} \oplus \nabla^{F}$ on $E \oplus F \rightarrow M$ is given by

$$
R_{X, Y}^{E \oplus F}=R_{X, Y}^{E} \oplus R_{X, Y}^{F}
$$

for all $X, Y \in T_{x} M$.
(b) The curvature tensor of the tensor connection on $E \otimes F \rightarrow M$ as defined in Exercise 3 of Sheet no. 11 is given by

$$
R_{X, Y}^{E \otimes F}=R_{X, Y}^{E} \otimes \operatorname{Id}_{F}+\operatorname{Id}_{E} \otimes R_{X, Y}^{F}
$$

for all $X, Y \in T_{x} M$.
(c) The curvature tensor of the dual bundle $E^{*} \rightarrow M$ endowed with the induced connection is given by

$$
\left(R_{X, Y}^{E^{*}} \alpha\right)(V)=-\alpha\left(R_{X, Y}^{E} V\right)
$$

for all $X, Y \in T_{x} M$, for all $V \in E_{x}$ and $\alpha \in E_{x}^{*}$.

Exercise 4

Let $\left(M^{n}, g\right)$ be a Riemannian manifold and denote by ∇ resp. R the LeviCivita connection resp. the Riemannian curvature tensor of $\left(M^{n}, g\right)$. Let the (0,4)-tensor \tilde{R} be defined by $\tilde{R}(X, Y, Z, W):=g(R(X, Y) Z, W)$, for all $X, Y, Z, W \in T_{x} M$ and $x \in M$.
(a) Let $x \in M$ be a point. Prove that the following identities are satisfied: for all $X, Y, Z, T, U \in T_{p} M$,
$\left(\nabla_{X} \tilde{R}\right)(Y, Z, T, U)=-\left(\nabla_{X} \tilde{R}\right)(Z, Y, T, U)=-\left(\nabla_{X} \tilde{R}\right)(Y, Z, U, T)=\left(\nabla_{X} \tilde{R}\right)(T, U, Y, Z)$.
(b) For a given tensor field $A \in \Gamma\left(T^{*} M \otimes T^{*} M\right)$ let the divergence of A be defined by

$$
\operatorname{div}(A)(X):=\sum_{j=1}^{n}\left(\nabla_{E_{j}} A\right)\left(E_{j}, X\right) \quad \forall X \in T M
$$

where $\left\{E_{j}\right\}_{1 \leq j \leq n}$ is a local orthonormal basis of $T M$, that is, $g\left(E_{i}, E_{j}\right)=$ δ_{i}^{j}. Prove using the second Bianchi identity:

$$
\operatorname{div}(\mathrm{ric})=\frac{1}{2} d \text { scal. }
$$

(Hint: for a given point $x \in M$, the basis $\left\{E_{j}\right\}_{1 \leq j \leq n}$ can be chosen such that $\left(\nabla E_{i}\right)_{\left.\right|_{x}}=0$ holds; how can this be done?)
(c) Application: Assuming $n \geq 3$, the manifold M connected and the existence of a smooth function $f: M \rightarrow \mathbb{R}$ with ric $=f \cdot g$ on M, prove that f is constant on M. Such a Riemannian manifold is then called Einstein.

Abgabe der Lösungen: Montag, den 21.1.2013 vor der Vorlesung.

