Differential Geometry I
 Exercise Sheet no. 11

Exercise 1

(a) Let $V \rightarrow M$ be a complex vector bundle endowed with a Hermitian metric $\langle\cdot, \cdot\rangle$ over a smooth manifold. Show that the dual bundle $V^{*} \rightarrow M$ is isomorphic to the so-called conjugate vector bundle $\bar{V} \rightarrow M$, where $\bar{V}_{x}:=V_{x}$ but where $\lambda \cdot v:=\bar{\lambda} v$ for all $v \in V_{x}, x \in M$ and $\lambda \in \mathbb{C}$.
(b) Let $\tau \rightarrow \mathbb{C P}^{n}$ be the tautological bundle as defined in Exercise 2 of Sheet no. 10. Using the canonical Hermitian inner product on \mathbb{C}^{n+1}, construct a Hermitian metric on τ.

Exercise 2

Let ∇ be any connection on the tangent bundle $T M$ of a smooth manifold M and T be its torsion, that is, $T(X, Y):=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$ for all $X, Y \in \mathfrak{X}(M)$. Show that T is a tensor on M, more precisely show that T defines a section of the vector bundle $T^{*} M \otimes T^{*} M \otimes T M \rightarrow M$.

Exercise 3

Let M be any smooth manifold.
(a) Given any vector bundles $E \rightarrow M$ and $F \rightarrow M$ with connections ∇^{E} and ∇^{F} respectively, prove that there exists a unique connection ∇ on the tensor product bundle $E \otimes F \rightarrow M$ such that $\nabla\left(s \otimes s^{\prime}\right)=\left(\nabla^{E} s\right) \otimes$ $s^{\prime}+s \otimes\left(\nabla^{F} s^{\prime}\right)$ for all sections s of E and s^{\prime} of F.
(b) Let $E \rightarrow M$ be a vector bundle with connection ∇^{E}. In each fiber E_{p} the trace tr_{p} is an element of $\operatorname{Hom}_{\mathbb{K}}\left(E_{p}^{*} \otimes E_{p}, \mathbb{K}\right) \cong E_{p} \otimes E_{p}^{*}$. Show that $p \mapsto \operatorname{tr}_{p}$ is a smooth map from M to $E \otimes E^{*}$. Show that it is a parallel section of $E \otimes E^{*} \rightarrow M$.
(c) Given any real vector bundle $E \rightarrow M$ with Riemannian metric $\langle\cdot, \cdot\rangle$ and connection ∇^{E}, show that the Riemannian metric - as a section of the vector bundle $E^{*} \otimes E^{*} \rightarrow M$ - is parallel iff the connection ∇^{E} is metric.

Exercise 4

Let $V \rightarrow M$ be a real or complex line bundle over a smooth manifold. Show that the tensor vector bundle $V^{*} \otimes V \rightarrow M$ is trivial.

Abgabe der Lösungen: Montag, den 14.1.2013 vor der Vorlesung.
Wir wünschen allen Teilnehmerinnen und Teilnehmern ein erfolgreiches neues Jahr!

