Universität Regensburg, Mathematik Prof. Dr. Bernd Ammann Dr. Nicolas Ginoux WS 2012/13 17.12.2012

Differential Geometry I Exercise Sheet no. 10

Exercise 1

Show that the map $p: S^n \to \mathbb{R}P^n$, $x \mapsto \mathbb{R}x$ is a local diffeomorphism, i.e. every $x \in S^n$ is in an open set U such that p(U) is open in $\mathbb{R}P^n$ and such that $p|_U$ is a diffeomorphism from U to p(U). Show that $\mathbb{R}P^n$ carries a metric g_0 such that p^*g_0 is the standard metric on S^n . This metric g_0 is called the standard metric of $\mathbb{R}P^n$. Determine the injectivity radius of $(\mathbb{R}P^n, g_0)$.

Exercise 2

The tautological bundle on the n-dimensional real projective space \mathbb{RP}^n is given by $L := \{(\ell, y) \in \mathbb{RP}^n \times \mathbb{R}^{n+1}, y \in \ell\}$ together with the projection map $\pi : L \to \mathbb{RP}^n, (\ell, y) \mapsto \ell$. Prove that there does not exist any continuous and nowhere vanishing section s of $\pi : L \to \mathbb{RP}^n$. (Hint: Interprete such a section as a map $\mathbb{RP}^n \to \mathbb{R}^{n+1} \setminus \{0\}$; considering the composition with the map $S^n \to \mathbb{RP}^n$, get a map $S^n \to S^n$ which has to be $\pm \mathrm{Id}$; conclude.)

Exercise 3(Geodesics and distance function on products)

- (a) Let $\gamma : [a, b] \to M$ be a piecewise C^1 curve on a smooth Riemannian manifold (M, g). Prove that γ minimizes the energy functional $E : c \mapsto \frac{1}{2} \int_a^b g(\dot{c}, \dot{c}) dt$ among all piecewise C^1 curves $c : [a, b] \to M$ with c(a) = p and c(b) = q iff γ is a minimal geodesic.
- (b) From now on let (M, g) := (M₁ × M₂, g₁ ⊕ g₂), where (M_i, g_i) is a smooth Riemannian manifold and the product manifold M₁ × M₂ (see Exercise no. 1 in Sheet 2) is equipped with the product metric g₁ ⊕ g₂, which is defined at p = (p₁, p₂) ∈ M₁ × M₂ by:

$$(g_1 \oplus g_2)|_{(p_1, p_2)} \left((X_1, X_2), (Y_1, Y_2) \right) := g_1|_{p_1} (X_1, Y_1) + g_2|_{p_2} (X_2, Y_2)$$

for all $X_i, Y_i \in T_{p_i}M$, i = 1, 2. Show that, if $\gamma_i : [a, b] \to M_i$ is a piecewise C^1 curve, i = 1, 2, then $\gamma := (\gamma_1, \gamma_2) : [a, b] \to M_1 \times M_2$ is a piecewise C^1 curve with $E(\gamma) = E(\gamma_1) + E(\gamma_2)$.

- (c) Show that γ is a minimal geodesic iff γ_1 and γ_2 are minimal geodesics.
- (d) Deduce that the distance function d associated to $g = g_1 \oplus g_2$ is given by

$$d((x_1, x_2), (y_1, y_2)) = \sqrt{d_1(x_1, y_1)^2 + d_2(x_2, y_2)^2}$$

for all $(x_1, x_2), (y_1, y_2) \in M_1 \times M_2$, where d_i is the distance function associated to the metric g_i on M_i .

Exercise 4(Sufficient criterion for the existence of a line) Let (M, g) be a complete smooth Riemannian manifold.

- (a) Let $(X_k)_{k\in\mathbb{N}}$ be a sequence in TM converging to some X and $a, b \in \mathbb{R}$ with a < b. Show that, if $\gamma_{X_k|_{[a,b]}} : [a,b] \to M$ is a shortest curve, then so is $\gamma_{X|_{[a,b]}} : [a,b] \to M$. Here and as usual, for any $Y \in TM$, we denote by $\gamma_Y : \mathbb{R} \to M$ the unique geodesic with $\gamma_Y(0) = \pi(Y) \in M$ and $\dot{\gamma}_Y(0) = Y$.
- (b) Assume the existence of two sequences $(x_k)_{k\in\mathbb{N}}, (y_k)_{k\in\mathbb{N}}$ in M, of a point $p \in M$ and of an $R \in]0, \infty[$ with $d(x_k, p) \xrightarrow[k\to\infty]{} \infty, d(y_k, p) \xrightarrow[k\to\infty]{} \infty$ and such that every shortest curve from x_k to y_k meets the ball $B_R(p)$. Show that there exists a line in (M, g). (*Hint: construct a limit of a sequence of shortest curves. Exercise no. 3 of Sheet 9 may be helpful.*)

Abgabe der Lösungen: Montag, den 7.1.2013 vor der Vorlesung.

Wir wünschen allen Teilnehmerinnen und Teilnehmern frohe Weihnachten und einen guten Rutsch!