Differential Geometry I

Exercise Sheet no. 10

Exercise 1

Show that the map $p: S^{n} \rightarrow \mathbb{R P}^{n}, x \mapsto \mathbb{R} x$ is a local diffeomorphism, i.e. every $x \in S^{n}$ is in an open set U such that $p(U)$ is open in $\mathbb{R P}^{n}$ and such that $\left.p\right|_{U}$ is a diffeomorphism from U to $p(U)$. Show that $\mathbb{R} P^{n}$ carries a metric g_{0} such that $p^{*} g_{0}$ is the standard metric on S^{n}. This metric g_{0} is called the standard metric of $\mathbb{R P}^{n}$. Determine the injectivity radius of $\left(\mathbb{R P}^{n}, g_{0}\right)$.

Exercise 2

The tautological bundle on the n-dimensional real projective space $\mathbb{R P}^{n}$ is given by $L:=\left\{(\ell, y) \in \mathbb{R P}^{n} \times \mathbb{R}^{n+1}, y \in \ell\right\}$ together with the projection map $\pi: L \rightarrow \mathbb{R P}^{n},(\ell, y) \mapsto \ell$. Prove that there does not exist any continuous and nowhere vanishing section s of $\pi: L \rightarrow \mathbb{R P}^{n}$. (Hint: Interprete such a section as a map $\mathbb{R P}^{n} \rightarrow \mathbb{R}^{n+1} \backslash\{0\}$; considering the composition with the map $S^{n} \rightarrow \mathbb{R P}^{n}$, get a map $S^{n} \rightarrow S^{n}$ which has to be $\pm \mathrm{Id}$; conclude.)

Exercise 3(Geodesics and distance function on products)
(a) Let $\gamma:[a, b] \rightarrow M$ be a piecewise C^{1} curve on a smooth Riemannian manifold (M, g). Prove that γ minimizes the energy functional $E: c \mapsto$ $\frac{1}{2} \int_{a}^{b} g(\dot{c}, \dot{c}) d t$ among all piecewise C^{1} curves $c:[a, b] \rightarrow M$ with $c(a)=p$ and $c(b)=q$ iff γ is a minimal geodesic.
(b) From now on let $(M, g):=\left(M_{1} \times M_{2}, g_{1} \oplus g_{2}\right)$, where $\left(M_{i}, g_{i}\right)$ is a smooth Riemannian manifold and the product manifold $M_{1} \times M_{2}$ (see Exercise no. 1 in Sheet 2) is equipped with the product metric $g_{1} \oplus g_{2}$, which is defined at $p=\left(p_{1}, p_{2}\right) \in M_{1} \times M_{2}$ by:

$$
\left.\left(g_{1} \oplus g_{2}\right)\right|_{\left(p_{1}, p_{2}\right)}\left(\left(X_{1}, X_{2}\right),\left(Y_{1}, Y_{2}\right)\right):=\left.g_{1}\right|_{p_{1}}\left(X_{1}, Y_{1}\right)+\left.g_{2}\right|_{p_{2}}\left(X_{2}, Y_{2}\right)
$$

for all $X_{i}, Y_{i} \in T_{p_{i}} M, i=1,2$. Show that, if $\gamma_{i}:[a, b] \rightarrow M_{i}$ is a piecewise C^{1} curve, $i=1,2$, then $\gamma:=\left(\gamma_{1}, \gamma_{2}\right):[a, b] \rightarrow M_{1} \times M_{2}$ is a piecewise C^{1} curve with $E(\gamma)=E\left(\gamma_{1}\right)+E\left(\gamma_{2}\right)$.
(c) Show that γ is a minimal geodesic iff γ_{1} and γ_{2} are minimal geodesics.
(d) Deduce that the distance function d associated to $g=g_{1} \oplus g_{2}$ is given by

$$
d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\sqrt{d_{1}\left(x_{1}, y_{1}\right)^{2}+d_{2}\left(x_{2}, y_{2}\right)^{2}}
$$

for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in M_{1} \times M_{2}$, where d_{i} is the distance function associated to the metric g_{i} on M_{i}.

Exercise 4 (Sufficient criterion for the existence of a line)
Let (M, g) be a complete smooth Riemannian manifold.
(a) Let $\left(X_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $T M$ converging to some X and $a, b \in \mathbb{R}$ with $a<b$. Show that, if $\gamma_{\left.X_{k}\right|_{[a, b]}}:[a, b] \rightarrow M$ is a shortest curve, then so is $\gamma_{\left.X\right|_{[a, b]}}:[a, b] \rightarrow M$. Here and as usual, for any $Y \in T M$, we denote by $\gamma_{Y}: \mathbb{R} \rightarrow M$ the unique geodesic with $\gamma_{Y}(0)=\pi(Y) \in M$ and $\dot{\gamma}_{Y}(0)=Y$.
(b) Assume the existence of two sequences $\left(x_{k}\right)_{k \in \mathbb{N}},\left(y_{k}\right)_{k \in \mathbb{N}}$ in M, of a point $p \in M$ and of an $R \in] 0, \infty\left[\right.$ with $d\left(x_{k}, p\right) \underset{k \rightarrow \infty}{\longrightarrow} \infty, d\left(y_{k}, p\right) \underset{k \rightarrow \infty}{\longrightarrow} \infty$ and such that every shortest curve from x_{k} to y_{k} meets the ball $B_{R}(p)$. Show that there exists a line in (M, g).
(Hint: construct a limit of a sequence of shortest curves. Exercise no. 3 of Sheet 9 may be helpful.)

Abgabe der Lösungen: Montag, den 7.1.2013 vor der Vorlesung.
Wir wünschen allen Teilnehmerinnen und Teilnehmern frohe Weihnachten und einen guten Rutsch!

