Prof. Dr. Bernd Ammann
Dr. Nicolas Ginoux

Differential Geometry I
 Exercise Sheet no. 9

Exercise 1

Let $\gamma:[a, b] \longrightarrow M$ be a piecewise C^{1} curve on a smooth Riemannian manifold (M, g).
(a) Prove that $L[\gamma]^{2} \leq 2(b-a) \cdot E[\gamma]$, where $E[\gamma]:=\frac{1}{2} \int_{a}^{b} g(\dot{\gamma}, \dot{\gamma}) d t$ is the energy of the curve γ.
(b) Show that $L[\gamma]^{2}=2(b-a) \cdot E[\gamma]$ holds iff γ is parametrized proportionally to arc-length.

Exercise 2

Let M be a smooth submanifold of \mathbb{R}^{k}.
(a) Show that, if M is closed, then M is complete.
(b) Show that the converse statement is wrong.

Exercise 3

Let (M, g) be a connected complete non-compact Riemannian manifold and $p \in M$ be a point.
(a) Show that there exists a sequence $\left(p_{i}\right)_{i \in \mathbb{N}}$ in M such that $d\left(p, p_{i}\right) \underset{i \rightarrow \infty}{\longrightarrow} \infty$.
(b) Show that, for each $i \in \mathbb{N}$, there exist $X_{i} \in T_{p} M$ and $r_{i} \in[0, \infty[$ with $g_{p}\left(X_{i}, X_{i}\right)=1$ and $p_{i}=\exp _{p}\left(r_{i} X_{i}\right)$.
(c) Show that the sequence $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ admits a converging subsequence and deduce that there exists a ray $\gamma:[0, \infty) \rightarrow M$ in (M, g) with $\gamma(0)=p$.

Exercise 4

Let M be a connected m-dimensional manifold, and assume that $N \subset M$ is an n-dimensional submanifold, i.e. for every $p \in N$ there is a chart $\phi: U \rightarrow$ $V \subset \mathbb{R}^{m}, p \in U$ such that $\phi(U \cap N)=V \cap\left(\mathbb{R}^{n} \times\{0\}\right)$. Let g be a Riemannian metric on M, such that (M, g) is complete, and assume that N is a closed (as a subset of M). Fix a point $q \in M$.
(a) Show the existence of a point $p \in N$ with $d(q, p)=d(q, N)$, where $d(q, N):=\inf _{x \in N}\{d(q, x)\}$. Is p unique? Justify your answer.
(b) Prove that there is a geodesic γ from q to p with length $L[\gamma]=d(q, p)$.
(c) Show that γ meets N orthogonally.

