Prof. Dr. Bernd Ammann
Dr. Nicolas Ginoux

Differential Geometry I
 Exercise Sheet no. 8

Exercise 1

Let $\left(M^{n}, g\right)$ be a smooth n-dimensional Riemannian manifold and $f: M \rightarrow \mathbb{R}$ be a smooth function on M.
(a) Show that there exists a unique smooth tangent vector field - which we denote by grad f and call the gradient vector field of f - on M such that

$$
\partial_{X} f=g(\operatorname{grad} f, X)
$$

holds for every $X \in \mathfrak{X}(M)$.
(b) Given any $p \in M$ and any orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of $T_{p} M$ (i.e., $\left.g_{p}\left(e_{i}, e_{j}\right)=\delta_{i}^{j}\right)$, prove that $\left.\operatorname{grad} f\right|_{p}=\sum_{j=1}^{n} \partial_{e_{j}} f \cdot e_{j}$.
(c) Given any chart $\varphi: U_{\varphi} \rightarrow V_{\varphi}$ of M, show that

$$
\operatorname{grad} f_{\left.\right|_{U_{\varphi}}}=\sum_{i, j=1}^{n} g^{i j} \frac{\partial f}{\partial \varphi^{i}} \cdot \frac{\partial}{\partial \varphi^{j}},
$$

where $\left(g^{i j}\right)_{1 \leq i, j \leq n}$ is the inverse matrix of the matrix $\left(g_{k l}\right)_{1 \leq k, l \leq n}$ of g in the chart φ.
Exercise 2 (Poincaré half-space)
Let $H:=\left\{(x, y) \in \mathbb{R}^{2}, y>0\right\}$ denote the upper half-space and define the Riemannian metric g on H by

$$
g:=\frac{d x^{2}+d y^{2}}{y^{2}} .
$$

(a) Compute the Christoffel symbols of the Levi-Civita connection in the canonical coordinates x, y of H.
(b) Let $c: \mathbb{R} \rightarrow H, t \mapsto(t, 1)$ and $v_{0}:=(0,1) \in \mathbb{R}^{2} \cong T_{(0,1)} H$. Show that, for the parallel vector field v along c with $v(0)=v_{0}$, the vector $v(t)$ makes an angle equal to t with the y-axis, for all t.
Exercise 3 (Surfaces of Revolution and Clairaut's theorem)
For an interval I and a positive smooth function $f: I \rightarrow \mathbb{R}^{+}$we define

$$
F(x, \phi):=\left(\begin{array}{c}
x \\
f(x) \cos (\phi) \\
f(x) \sin (\phi)
\end{array}\right)
$$

The surface of revolution generated by f is

$$
M_{f}:=\{F(x, \phi) \mid x \in I, \phi \in \mathbb{R}\}
$$

Then $\partial F / \partial x$ and $\partial F / \partial \phi$ define vector fields along $F: I \times \mathbb{R} \rightarrow M_{f}$.
(a) Construct vector fields $X_{x}, X_{\phi} \in \mathcal{X}\left(M_{f}\right)$ such that $X_{x} \circ F=\partial F / \partial x$ and $X_{\phi} \circ F=\partial F / \partial \phi$. Show that X_{x} and X_{ϕ} are everywhere orthogonal.
(b) Show that $c_{x_{0}}: \mathbb{R} \rightarrow M_{f}, \phi \mapsto F\left(x_{0}, \phi\right)$ is a geodesic if and only if $f^{\prime}\left(x_{0}\right)=0$. Hint: Exercise 2 from sheet no. 7 is helpful.
(c) Let $\gamma(t)=F(x(t), \phi(t))$ be a curve in M_{f}. Verify

$$
\begin{equation*}
g\left(\dot{\gamma}(t), \frac{\partial F}{\partial \phi}(x(t), \phi(t))\right)=f(x(t))^{2} \dot{\phi}(t) \tag{1}
\end{equation*}
$$

(d) Verify the formula

$$
\frac{d}{d t}\left(g\left(\dot{\gamma}(t), \frac{\partial F}{\partial \phi}\right)\right)=g\left(\frac{\nabla}{d t} \dot{\gamma}(t), \frac{\partial F}{\partial \phi}\right)+\dot{\phi}(t) g\left(\dot{\gamma}(t), \frac{\partial^{2} F}{\partial^{2} \phi}\right)+\dot{x}(t) g\left(\dot{\gamma}(t), \frac{\partial^{2} F}{\partial \phi \partial x}\right)
$$

where we suppressed $(x(t), \phi(t))$ in the notation.
(e) Show that both $\|\dot{\gamma}(t)\|$ and $f(x(t))^{2} \dot{\phi}(t)$ are constant if γ is a geodesic.

Hint: Derive both sides of (1) with respect to t and use (d).
(f) (Extra question, 2 bonus points.) Does "only if" hold in (e)?

Exercise 4

Let ∇ be any connection on a smooth manifold M. Let $c: I \rightarrow M$ be any smooth curve and denote by $P_{s, t}: T_{c(s)} M \rightarrow T_{c(t)} M$ the parallel transport along c. Show that, for any smooth vector field X along c and any $t_{0} \in I$, we have

$$
\frac{\nabla X}{d t}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}}\left(\frac{P_{t, t_{0}}(X(t))-X\left(t_{0}\right)}{t-t_{0}}\right) .
$$

Abgabe der Lösungen: Montag, den 10.12.2012 vor der Vorlesung.

