Differential Geometry I Exercise Sheet no. 7

Exercise 1

Let (M, g) be a smooth compact Riemannian manifold. Show that every geodesic of (M, g) is defined in \mathbb{R} .

Exercise 2

- 1. Let M_1 and M_2 be two smooth surfaces in \mathbb{R}^3 , and assume that we have a smooth curve $c: I \to \mathbb{R}^3$ with $c(I) \subset M_1 \cap M_2$. Further we assume that $T_{c(t)}M_1 = T_{c(t)}M_2$ for all $t \in I$. Show that the parallel transports along c in M_1 and in M_2 coincide.
- 2. Given $\theta \in [0, 2\pi[$ let $C := \{(r \cos \varphi, r \sin \varphi), r \in [0, \infty[, \varphi \in]0, \theta[\} \subset \mathbb{R}^2$. Determine the parallel transport along the curve $c_r : [0, \theta[\to C, t \mapsto (r \cos t, r \sin t), \text{ where } r > 0.$
- 3. Deduce an explicit formula for the parallel transport along a circle of latitude $t \mapsto (\cos t \cos \varphi, \sin t \cos \varphi, \sin \varphi)$ in S^2 , where $\varphi \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

Exercise 3(Geodesics in hyperbolic space)

- 1. Let $\phi : M \to M$ be an isometry of (M, g). For any $X \in TM$ let $\gamma_X : I \to M$ be a geodesic with $\dot{\gamma}_X(0) = X$. Show: $\phi(\gamma_X(t)) = \gamma_X(t)$ for all $t \in I$ if and only if $d\phi(X) = X$. If $\gamma : I \to M$ is an arbitrary curve in M with $\phi(\gamma(t)) = \gamma(t)$ for all $t \in I$, then $d\phi(\frac{\nabla}{dt}\dot{\gamma}(t)) = \frac{\nabla}{dt}\dot{\gamma}(t)$ for all $t \in I$.
- 2. Let $\mathbb{H}^n := \{x \in \mathbb{R}^{n+1}, \langle \langle x, x \rangle \rangle = -1 \text{ and } x_0 > 0\}$ denote the *n*-dimensional hyperbolic space (see Exercise no. 4 in Sheet 5). We identify $T_x \mathbb{H}^n$ with $x^{\perp} := \{V \in \mathbb{R}^{n+1}, \langle \langle V, x \rangle \rangle = 0\}$. For V in x^{\perp} we define $||V|| := \sqrt{\langle \langle V, V \rangle \rangle}$. For $V \in x^{\perp} \smallsetminus \{0\}$ show that

$$\gamma_{x,V}(t) := \cosh(\|V\|t)x + \sinh(\|V\|t)\frac{V}{\|V\|}$$

is a curve in \mathbb{H}^n .

- 3. Determine a linear map $\Phi : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ with $\Phi^* \langle\!\langle \cdot, \cdot \rangle\!\rangle = \langle\!\langle \cdot, \cdot \rangle\!\rangle$ such that its fixed point set is the plane spanned by $x \in \mathbb{H}^n$ and $V \in x^{\perp} \setminus \{0\}$. Show that its restriction to \mathbb{H}^n defines an isometry $\phi : \mathbb{H}^n \to \mathbb{H}^n$. What is the fixed point set?
- 4. Conclude that $\frac{\nabla}{dt}\dot{\gamma}_{x,V}(t) = f(t)\dot{\gamma}_{x,V}(t)$ for all $t \in \mathbb{R}$ and for a suitable function f.

5. Show that $\gamma_{x,V}$ is a geodesic. *Hint: Calculate* $\|\dot{\gamma}_{x,V}(t)\|$. Are all nonconstant geodesics in \mathbb{H}^n of this form?

Exercise 4

Does there exist a Riemannian metric

- 1. on \mathbb{R}^2 such that all circles can be parametrized as geodesics?
- 2. on $\mathbb{R}^2 \smallsetminus \{0\}$ such that all circles centered at 0 can be parametrized as geodesics?
- 3. on $\mathbb{R}^2 \setminus \{0\}$ such that all circles centered at 0 can be parametrized as geodesics but *no* ray through 0 is a geodesic?

Justify each of your answers.

Abgabe der Lösungen: Montag, den 3.12.2012 vor der Vorlesung.