Differential Geometry I
 Exercise Sheet no. 7

Exercise 1

Let (M, g) be a smooth compact Riemannian manifold. Show that every geodesic of (M, g) is defined in \mathbb{R}.

Exercise 2

1. Let M_{1} and M_{2} be two smooth surfaces in \mathbb{R}^{3}, and assume that we have a smooth curve $c: I \rightarrow \mathbb{R}^{3}$ with $c(I) \subset M_{1} \cap M_{2}$. Further we assume that $T_{c(t)} M_{1}=T_{c(t)} M_{2}$ for all $t \in I$. Show that the parallel transports along c in M_{1} and in M_{2} coincide.
2. Given $\theta \in] 0,2 \pi[$ let $C:=\{(r \cos \varphi, r \sin \varphi), r \in] 0, \infty[, \varphi \in] 0, \theta[\} \subset$ \mathbb{R}^{2}. Determine the parallel transport along the curve $\left.c_{r}:\right] 0, \theta[\rightarrow C$, $t \mapsto(r \cos t, r \sin t)$, where $r>0$.
3. Deduce an explicit formula for the parallel transport along a circle of latitude $t \mapsto(\cos t \cos \varphi, \sin t \cos \varphi, \sin \varphi)$ in S^{2}, where $\left.\varphi \in\right]-\frac{\pi}{2}, \frac{\pi}{2}[$.

Exercise 3(Geodesics in hyperbolic space)

1. Let $\phi: M \rightarrow M$ be an isometry of (M, g). For any $X \in T M$ let $\gamma_{X}: I \rightarrow M$ be a geodesic with $\dot{\gamma}_{X}(0)=X$.
Show: $\phi\left(\gamma_{X}(t)\right)=\gamma_{X}(t)$ for all $t \in I$ if and only if $d \phi(X)=X$. If $\gamma: I \rightarrow M$ is an arbitrary curve in M with $\phi(\gamma(t))=\gamma(t)$ for all $t \in I$, then $d \phi\left(\frac{\nabla}{d t} \dot{\gamma}(t)\right)=\frac{\nabla}{d t} \dot{\gamma}(t)$ for all $t \in I$.
2. Let $\mathbb{H}^{n}:=\left\{x \in \mathbb{R}^{n+1},\langle\langle x, x\rangle\rangle=-1\right.$ and $\left.x_{0}>0\right\}$ denote the n-dimensional hyperbolic space (see Exercise no. 4 in Sheet 5). We identify $T_{x} \Vdash^{n}$ with $x^{\perp}:=\left\{V \in \mathbb{R}^{n+1},\langle\langle V, x\rangle\rangle=0\right\}$. For V in x^{\perp} we define $\|V\|:=$ $\sqrt{\langle\langle V, V\rangle\rangle}$. For $V \in x^{\perp} \backslash\{0\}$ show that

$$
\gamma_{x, V}(t):=\cosh (\|V\| t) x+\sinh (\|V\| t) \frac{V}{\|V\|}
$$

is a curve in \Vdash^{n}.
3. Determine a linear map $\Phi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ with $\Phi^{*}\langle\langle\cdot, \cdot\rangle\rangle=\langle\langle\cdot, \cdot\rangle\rangle$ such that its fixed point set is the plane spanned by $x \in \mathbb{H}^{n}$ and $V \in x^{\perp} \backslash\{0\}$. Show that its restriction to \mathbb{H}^{n} defines an isometry $\phi: \mathbb{H}^{n} \rightarrow \mathbb{H}^{n}$. What is the fixed point set?
4. Conclude that $\frac{\nabla}{d t} \dot{\gamma}_{x, V}(t)=f(t) \dot{\gamma}_{x, V}(t)$ for all $t \in \mathbb{R}$ and for a suitable function f.
5. Show that $\gamma_{x, V}$ is a geodesic. Hint: Calculate $\left\|\dot{\gamma}_{x, V}(t)\right\|$. Are all nonconstant geodesics in \mathbb{H}^{n} of this form?

Exercise 4

Does there exist a Riemannian metric

1. on \mathbb{R}^{2} such that all circles can be parametrized as geodesics?
2. on $\mathbb{R}^{2} \backslash\{0\}$ such that all circles centered at 0 can be parametrized as geodesics?
3. on $\mathbb{R}^{2} \backslash\{0\}$ such that all circles centered at 0 can be parametrized as geodesics but no ray through 0 is a geodesic?

Justify each of your answers.

Abgabe der Lösungen: Montag, den 3.12.2012 vor der Vorlesung.

