Differential Geometry I
 Exercise Sheet no. 6

Exercise 1

Let $F: M \longrightarrow N$ be a smooth map between smooth manifolds M and N. Let X, Y (resp. \tilde{X}, \tilde{Y}) be (smooth) vector fields on M (resp. N). We say that X is F-related to \tilde{X} iff $d F \circ X=\tilde{X} \circ F$ holds on M.
Show that, if X is F-related to \tilde{X} and Y is F-related to \tilde{Y}, then $[X, Y]$ is F-related to $[\tilde{X}, \tilde{Y}]$.

Exercise 2

Let M^{n} be a smooth n-dimensional submanifold of \mathbb{R}^{k}. Given vector fields X, Y on M, we extend them to vector fields \bar{X}, \bar{Y} in an open neighbourhood of M in \mathbb{R}^{k} and set $\left(\nabla_{X} Y\right)_{\left.\right|_{p}}:=\operatorname{pr}_{p}\left(\left(\partial_{\bar{X}} \bar{Y}\right)_{\left.\right|_{p}}\right)$ for every $p \in M$, where $\operatorname{pr}_{p}: \mathbb{R}^{k} \rightarrow T_{p} M$ denotes the orthogonal projection on $T_{p} M$ (identified to a vector subspace of \mathbb{R}^{k}).
Show that ∇ defines a metric and torsion-free connection on M.

Exercise 3

Recall that an isometry between two smooth n-dimensional Riemannian manifolds (M, g) and (N, h) is a diffeomorphism $\varphi: M \rightarrow N$ which preserves the metric, that is, with $\varphi^{*} h=g$.

1. Show that, in the case $(M, g)=(N, h)$, the isometries of (M, g) form a group w.r.t. the composition of maps.
2. Let $\operatorname{Aff}(M, g)$ be the set of diffeomorphisms of M preserving the LeviCivita connection ∇ of (M, g), that is,
$\operatorname{Aff}(M, g):=\left\{\varphi: M \rightarrow M\right.$ diffeo. with $\left.\nabla_{\varphi_{*} X} \varphi_{*} Y=\varphi_{*}\left(\nabla_{X} Y\right) \forall X, Y \in \mathfrak{X}(M)\right\}$,
where, for any $X \in \mathfrak{X}(M)$, the vector field $\varphi_{*} X \in \mathfrak{X}(M)$ is defined by $\left(\varphi_{*} X\right)(x):=d_{\varphi^{-1}(x)} \varphi\left(X\left(\varphi^{-1}(x)\right)\right)$ for all $x \in M$. Show that $\operatorname{Aff}(M, g)$ is a group containing the group of isometries of (M, g).
3. Let $M=\mathbb{R}^{n}$ be endowed with the standard Riemannian metric g, i.e. the Euclidean metric. Determine all elements $\varphi \in \operatorname{Aff}(M, g)$ with $\varphi(0)=0$.

Exercise 4

Let M be a smooth manifold. Given a 1-parameter group of diffeomorphisms $\varphi: M \times \mathbb{R} \rightarrow M,(x, t) \mapsto \varphi_{t}(x)$ on M, let X be associated tangent vector field on M as in Exercise no. 3 of Sheet 4. Show that, for any smooth tangent vector field Y on M,

$$
\left.\frac{d}{d t}\right|_{t=0}\left(\varphi_{t}\right)_{*} Y=-[X, Y]
$$

where, for any $t \in \mathbb{R},\left(\varphi_{t}\right)_{*} Y$ denotes the push-out tangent vector field of Y defined in the last exercise above.

Abgabe der Lösungen: Montag, den 26.11.2012 vor der Vorlesung.

