Differential Geometry I
 Exercise Sheet no. 5

Exercise 1

Let M be a smooth n-dimensional manifold and, for each point $p \in M, g_{\mid p}$ be a Euclidean inner product on $T_{p} M$. Show that the following statements are equivalent:

1. For any smooth tangent vector fields X, Y on M, the map $M \rightarrow \mathbb{R}$, $p \mapsto g_{\left.\right|_{p}}(X(p), Y(p))$, is smooth.
2. For any chart $\varphi: U_{\varphi} \rightarrow V_{\varphi}$ of M and all $1 \leq i, j \leq n$, the function $g_{i j}^{\varphi}: V_{\varphi} \rightarrow \mathbb{R}$ defined in the lecture is smooth.

Exercise 2

Let M^{m}, N^{n} be smooth manifolds and $\phi: M \rightarrow N$ be an immersion, that is, ϕ is a smooth map and $d \phi_{\left.\right|_{p}}: T_{p} M \rightarrow T_{\phi(p)} N$ is injective for any $p \in M$. Show that, for any Riemannian metric h on N, the map $p \mapsto\left(d \phi_{\left.\right|_{p}}\right)^{*} h_{\left.\right|_{p}}$ introduced in the lecture defines a Riemannian metric on M.

Exercise 3

Let M be a smooth n-dimensional manifold. Recall that a derivation on M is a linear map $\delta: C^{\infty}(M) \rightarrow C^{\infty}(M)$ which satisfies the product rule: for all $f_{1}, f_{2} \in C^{\infty}(M)$,

$$
\delta\left(f_{1} f_{2}\right)=\left(\delta f_{1}\right) f_{2}+f_{1}\left(\delta f_{2}\right)
$$

Let X, Y are two smooth tangent vector fields on M.

1. Show that $\left[\partial_{X}, \partial_{Y}\right]:=\partial_{X} \circ \partial_{Y}-\partial_{Y} \circ \partial_{X}$ defines a derivation on M. Here, ∂_{X} is the derivation associated to X as in the lecture.
2. Deduce that there exists a unique smooth tangent vector field on M, which we denote by $[X, Y]$, such that $\partial_{[X, Y]}=\left[\partial_{X}, \partial_{Y}\right]$.
3. Show that, for any $f \in C^{\infty}(M)$, one has $[X, f Y]=\partial_{X} f \cdot Y+f[X, Y]$.
4. Show that, if $\varphi: U_{\varphi} \rightarrow V_{\varphi}$ is a chart of M, then $\left[\frac{\partial}{\partial \varphi^{i}}, \frac{\partial}{\partial \varphi^{j}}\right]=0$ for all $1 \leq i, j \leq n$. Deduce that, if $X_{\left.\right|_{\varphi}}=X^{i} \frac{\partial}{\partial \varphi^{i}}$ and $Y_{U_{\varphi}}=Y^{i} \frac{\partial}{\partial \varphi^{i}}$, then

$$
[X, Y]_{\left.\right|_{\varphi}}=\left(\partial_{X}\left(Y^{i}\right)-\partial_{Y}\left(X^{i}\right)\right) \frac{\partial}{\partial \varphi^{i}}=\left(X^{j} \frac{\partial Y^{i}}{\partial \varphi^{j}}-Y^{j} \frac{\partial X^{i}}{\partial \varphi^{j}}\right) \frac{\partial}{\partial \varphi^{i}} .
$$

Exercise 4

Let $\langle\langle\cdot, \cdot\rangle\rangle$ denote the following bilinear form on \mathbb{R}^{n+1} :

$$
\langle\langle x, y\rangle\rangle:=-x_{0} y_{0}+\sum_{j=1}^{n} x_{j} y_{j}
$$

for all $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{0}, y_{1}, \ldots, y_{n}\right)$ in \mathbb{R}^{n+1}.

1. Show that $\langle\langle\cdot, \cdot\rangle\rangle$ defines a non-degenerate symmetric bilinear form of index 1 on \mathbb{R}^{n+1}.
2. Let $\mathbb{H}^{n}:=\left\{x \in \mathbb{R}^{n+1},\langle\langle x, x\rangle\rangle=-1\right.$ and $\left.x_{0}>0\right\} \subset \mathbb{R}^{n+1}$. Show that \mathbb{H}^{n} is a smooth n-dimensional submanifold of \mathbb{R}^{n+1}.
3. Prove that, for any $p \in \mathbb{H}^{n}$, the tangent space of \mathbb{H}^{n} at p can be canonically identified with $E_{p}:=\left\{X \in \mathbb{R}^{n+1},\langle\langle X, p\rangle\rangle=0\right\}$.
4. Show that $\langle\langle\cdot, \cdot\rangle\rangle_{\left.\right|_{E_{p} \times E_{p}}}$ is positive-definite and deduce that $\langle\langle\cdot, \cdot\rangle\rangle$ induces a Riemannian metric on \mathbb{H}^{n}.

Abgabe der Lösungen: Montag, den 19.11.2012 vor der Vorlesung.

