Differential Geometry I Exercise Sheet no. 5

Exercise 1

Let M be a smooth *n*-dimensional manifold and, for each point $p \in M$, $g_{|_p}$ be a Euclidean inner product on T_pM . Show that the following statements are equivalent:

- 1. For any smooth tangent vector fields X, Y on M, the map $M \to \mathbb{R}$, $p \mapsto g_{|_{p}}(X(p), Y(p))$, is smooth.
- 2. For any chart $\varphi : U_{\varphi} \to V_{\varphi}$ of M and all $1 \leq i, j \leq n$, the function $g_{ij}^{\varphi} : V_{\varphi} \to \mathbb{R}$ defined in the lecture is smooth.

Exercise 2

Let M^m , N^n be smooth manifolds and $\phi: M \to N$ be an immersion, that is, ϕ is a smooth map and $d\phi_{|_p}: T_pM \to T_{\phi(p)}N$ is injective for any $p \in M$. Show that, for any Riemannian metric h on N, the map $p \mapsto (d\phi_{|_p})^*h_{|_p}$ introduced in the lecture defines a Riemannian metric on M.

Exercise 3

Let M be a smooth *n*-dimensional manifold. Recall that a *derivation* on M is a linear map $\delta : C^{\infty}(M) \to C^{\infty}(M)$ which satisfies the product rule: for all $f_1, f_2 \in C^{\infty}(M)$,

$$\delta(f_1 f_2) = (\delta f_1) f_2 + f_1(\delta f_2).$$

Let X, Y are two smooth tangent vector fields on M.

- 1. Show that $[\partial_X, \partial_Y] := \partial_X \circ \partial_Y \partial_Y \circ \partial_X$ defines a derivation on M. Here, ∂_X is the derivation associated to X as in the lecture.
- 2. Deduce that there exists a unique smooth tangent vector field on M, which we denote by [X, Y], such that $\partial_{[X,Y]} = [\partial_X, \partial_Y]$.
- 3. Show that, for any $f \in C^{\infty}(M)$, one has $[X, fY] = \partial_X f \cdot Y + f[X, Y]$.
- 4. Show that, if $\varphi : U_{\varphi} \to V_{\varphi}$ is a chart of M, then $\left[\frac{\partial}{\partial \varphi^{i}}, \frac{\partial}{\partial \varphi^{j}}\right] = 0$ for all $1 \leq i, j \leq n$. Deduce that, if $X_{|_{U_{\varphi}}} = X^{i} \frac{\partial}{\partial \varphi^{i}}$ and $Y_{|_{U_{\varphi}}} = Y^{i} \frac{\partial}{\partial \varphi^{i}}$, then

$$[X,Y]_{|_{U_{\varphi}}} = \left(\partial_X(Y^i) - \partial_Y(X^i)\right)\frac{\partial}{\partial\varphi^i} = \left(X^j\frac{\partial Y^i}{\partial\varphi^j} - Y^j\frac{\partial X^i}{\partial\varphi^j}\right)\frac{\partial}{\partial\varphi^i}.$$

Exercise 4

Let $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ denote the following bilinear form on \mathbb{R}^{n+1} :

$$\langle\!\langle x, y \rangle\!\rangle := -x_0 y_0 + \sum_{j=1}^n x_j y_j$$

for all $x = (x_0, x_1, \dots, x_n)$ and $y = (y_0, y_1, \dots, y_n)$ in \mathbb{R}^{n+1} .

- 1. Show that $\langle\!\langle\cdot,\cdot\rangle\!\rangle$ defines a non-degenerate symmetric bilinear form of index 1 on \mathbb{R}^{n+1} .
- 2. Let $\mathbb{H}^n := \{x \in \mathbb{R}^{n+1}, \langle \langle x, x \rangle \rangle = -1 \text{ and } x_0 > 0\} \subset \mathbb{R}^{n+1}$. Show that \mathbb{H}^n is a smooth *n*-dimensional submanifold of \mathbb{R}^{n+1} .
- 3. Prove that, for any $p \in \mathbb{H}^n$, the tangent space of \mathbb{H}^n at p can be canonically identified with $E_p := \{X \in \mathbb{R}^{n+1}, \langle \langle X, p \rangle \rangle = 0\}.$
- 4. Show that $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{|_{E_p \times E_p}}$ is positive-definite and deduce that $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ induces a Riemannian metric on \mathbb{H}^n .

Abgabe der Lösungen: Montag, den 19.11.2012 vor der Vorlesung.