Universität Regensburg, Mathematik Prof. Dr. Bernd Ammann Dr. Nicolas Ginoux

Differential Geometry I Exercise Sheet no. 4

Exercise 1

Let X be a tangent vector field on a smooth manifold M, that is, X is a map $M \to TM$ with $\pi \circ X = \mathrm{Id}_M$, where $\pi : TM \to M$ is the projection map. Recall that, given a chart $\varphi : U \to V$ of M, the associated coordinate vector fields $\{\frac{\partial}{\partial \varphi^1}, \ldots, \frac{\partial}{\partial \varphi^n}\}$ form a basis of TM in each point of U, in particular any tangent vector field X on M can be written in the form $X = X^i \frac{\partial}{\partial \varphi^i}$ on U, where $X^1, \ldots, X^n : U \to \mathbb{R}$ are functions.

Show that X is smooth as a map between manifolds if and only if the functions $X^1, \ldots, X^n : U \to \mathbb{R}$ are smooth for any chart.

Exercise 2

Let $f: M \to \mathbb{R}$ be a C^1 map on a compact smooth *n*-dimensional manifold, where $n \ge 1$.

- 1. Let $p \in M$ be a point. Show that, if f reaches a maximum or a minimum at p, then $d_p f = 0$.
- 2. Show that the differential map of f vanishes in at least two points in M.
- 3. Show that f has exactly one critical value if and only if f is constant.

Exercise 3

Let M be a compact smooth *n*-dimensional manifold. By definition, a oneparameter group of diffeomorphisms on M is a smooth map $\varphi : M \times \mathbb{R} \to M$, $(x,t) \mapsto \varphi_t(x)$, with $\varphi_0 = \mathrm{Id}_M$ and $\varphi_t \circ \varphi_s = \varphi_{t+s}$ for all $s, t \in \mathbb{R}$.

- 1. Show that, given any one-parameter group of diffeomorphisms $(\varphi_t)_t$ on M, the map $X(x) := \frac{d}{dt}|_{t=0}(\varphi_t(x))$ defines a smooth tangent vector field on M.
- 2. Conversely, show that, given any smooth vector field X on M, there exists a unique one-parameter group of diffeomorphisms $(\varphi_t)_t$ on M such that $\frac{d}{dt}|_{t=0}(\varphi_t(x)) = X(x)$ for all $x \in M$. Hint: First construct $\varphi_t(x)$ for fixed x and t close to 0 using the theorem of Picard-Lindelöff; then show that $t \mapsto \varphi_t(x)$ can be extended on \mathbb{R} .

Abgabe der Lösungen: Montag, den 12.11.2012 vor der Vorlesung.