Universität Regensburg, Mathematik Prof. Dr. Bernd Ammann Dr. Nicolas Ginoux WS 2012/13 29.10.2012

Differential Geometry I Exercise Sheet no. 3

Exercise 1

Let M^m be an *m*-dimensional submanifold of \mathbb{R}^k an $p \in M^m$ be a point. Prove that the tangent space of the manifold M^m at p as defined in the lecture can be identified with the tangent space of the submanifold M^m at p you already know from previous lectures.

Exercise 2

Show that any topological manifold carries an atlas with countably many charts.

Exercise 3

Let M be a set and $n \in \mathbb{N}$. Further, we assume that a family of bijective maps $(\phi_{\alpha} : U_{\alpha} \to V_{\alpha})_{\alpha \in A}$ is given, where U_{α} is a subset of M and where V_{α} is an open subset of \mathbb{R}^n . This family is supposed to satisfy:

- (i) $M = \bigcup_{\alpha \in A} U_{\alpha}$,
- (ii) $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ is open in \mathbb{R}^n for all $\alpha, \beta \in \mathbb{R}^n$
- (iii) $\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$ is continuous for all $\alpha, \beta \in A$.

Show that

- (a) There is a unique topology on M such that all U_{α} are open and such that all ϕ_{α} are homeomorphisms.
- (b) If $A_1 \subset A$ satisfies $M = \bigcup_{\alpha \in A_1} U_\alpha$, then $(\phi_\alpha : U_\alpha \to V_\alpha)_{\alpha \in A}$ and $(\phi_\alpha : U_\alpha \to V_\alpha)_{\alpha \in A_1}$ induce the same topology on M.
- (c) The topology on M is second countable if A is countable.
- (d) Suppose that for any $p, q \in M$ we have:
 - (i) there is $\alpha \in A$ with $p, q \in U_{\alpha}$, or
 - (ii) there are $\alpha, \beta \in A$ with $p \in U_{\alpha}, q \in U_{\beta}, U_{\alpha} \cap U_{\beta} = \emptyset$.

Then the topology on M is Hausdorff.

Are the sufficient conditions in (c) resp. (d) for second countability resp. Hausdorff property also necessary?

Exercise 4

Let $\mathbb{C}P^n := \mathbb{C}^{n+1} \setminus \{0\}/_{\sim}$ denote the complex projective space where, by definition, $x \sim y \iff x \in \mathbb{C} \cdot y$. We note by $[x^1, \ldots, x^{n+1}]$ the equivalence class of $(x^1, \ldots, x^{n+1}) \in \mathbb{C}^{n+1} \setminus \{0\}$. For $\alpha \in \{1, \ldots, n+1\}$ we let U_{α} be the subset of all $[x^1, \ldots, x^{n+1}] \in \mathbb{C}P^n$ with $x^{\alpha} \neq 0$ and define the map

$$\phi_{\alpha}: U_{\alpha} \longrightarrow \mathbb{C}^{n}$$
$$[x^{1}, \dots, x^{n+1}] \longmapsto \left(\frac{x_{1}}{x_{\alpha}}, \dots, \widehat{x_{\alpha}}, \dots, \frac{x_{n+1}}{x_{\alpha}}\right),$$

where, as usual, $\widehat{x_{\alpha}}$ means that the α^{th} coordinate is omitted.

- 1. Show that U_{α} and ϕ_{α} are well-defined and that ϕ_{α} is bijective, for all $\alpha \in \{1, \ldots, n+1\}.$
- 2. Show with the help of Exercise 3 that $\mathcal{A} := \{(U_{\alpha}, \phi_{\alpha}), 1 \leq \alpha \leq n+1\}$ defines a structure of C^{∞} manifold on $\mathbb{C}P^{n}$.
- 3. Show that the underlying topology coincides with the quotient topology, where \mathbb{C}^{n+1} carries the standard topology.

Abgabe der Lösungen: Montag, den 5.11.2012 vor der Vorlesung.